File size: 4,123 Bytes
c2b7cdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import cv2
import streamlit as st
import tempfile
import torch
from torchvision import transforms
from mtcnn import MTCNN
from skimage.feature import hog
import joblib
import numpy as np

# Preprocessing for Siamese Model
def preprocess_image_siamese(img):
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor()
    ])
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    return transform(img)

# Preprocessing for SVM model (converting to grayscale)
def preprocess_image_svm(img):
    img = cv2.resize(img, (224, 224))
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    return img

# Extract HOG Features
def extract_hog_features(img):
    hog_features = hog(img, orientations=9, pixels_per_cell=(16, 16), cells_per_block=(4, 4))
    return hog_features

# Detect faces using MTCNN
def get_face(img):
    detector = MTCNN()
    faces = detector.detect_faces(img)
    if faces:
        x1, y1, w, h = faces[0]['box']
        x1, y1 = abs(x1), abs(y1)
        x2, y2 = x1 + w, y1 + h
        return img[y1:y2, x1:x2]
    return None

# Function to verify face (either HOG-SVM or Siamese model)
def verify(img1, img2, model_type, anchor_img):
    with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_img1:
        temp_img1.write(img1.read())
        temp_img1_path = temp_img1.name
    with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_img2:
        temp_img2.write(img2.read())
        temp_img2_path = temp_img2.name

    img1p = cv2.imread(temp_img1_path)
    img2p = cv2.imread(temp_img2_path)

    face1 = get_face(img1p)
    face2 = get_face(img2p)

    if face1 is not None and face2 is not None:
        st.image([face1, face2], caption=["Image 1", "Image 2"], width=200)

        if model_type == "HOG-SVM":
            with open('./svm.pkl', 'rb') as f:
                svm = joblib.load(f)
            with open('./pca.pkl', 'rb') as f:
                pca = joblib.load(f)

            face1 = preprocess_image_svm(face1)
            face2 = preprocess_image_svm(face2)

            hog1 = extract_hog_features(face1)
            hog2 = extract_hog_features(face2)

            hog1_pca = pca.transform([hog1])
            hog2_pca = pca.transform([hog2])

            pred1 = svm.predict(hog1_pca)
            pred2 = svm.predict(hog2_pca)

            if pred1 == 1 and pred2 == 1:
                st.write("Matched")
            else:
                st.write("Not Matched")
    else:
        st.write("Face not detected in one or both images")

# Main function to handle Streamlit interaction
def main():
    st.title("Real-time Face Verification App")
    
    model_type = st.selectbox("Select Model", ["Siamese", "HOG-SVM"])
    anchor_img = st.file_uploader("Select Anchor Image", type=["jpg", "png"])

    if model_type == "Siamese":
        # Implement Siamese model choice logic here if needed
        st.write("Using Siamese Network")
        
    elif model_type == "HOG-SVM":
        # Implement HOG-SVM logic here
        st.write("Using HOG-SVM")

    # Camera Input for Face Detection
    run_detection = st.checkbox("Start Camera")
    
    if run_detection:
        cap = cv2.VideoCapture(0)  # Start camera
        
        while True:
            ret, frame = cap.read()
            if not ret:
                st.write("Failed to grab frame.")
                break
            
            # Detect face in the current frame
            face = get_face(frame)
            if face is not None:
                # Draw bounding box around detected face
                x1, y1, x2, y2 = face[0], face[1], face[2], face[3]  # Update face coordinates
                cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
                
                # Show bounding box
                st.image(frame, channels="BGR", use_column_width=True)
            
            # Stop camera when ESC is pressed
            key = cv2.waitKey(1) & 0xFF
            if key == 27:  # ESC key
                break
        
        cap.release()
        cv2.destroyAllWindows()

if __name__ == "__main__":
    main()