File size: 4,486 Bytes
c2b7cdc
08b8cf8
c2b7cdc
 
 
69ccc49
c2b7cdc
786ce5c
c2b7cdc
 
 
 
 
119036b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2b7cdc
 
 
 
 
84e2069
c2b7cdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af18329
 
 
 
 
c2b7cdc
3391f44
 
 
0f130a4
3391f44
 
 
 
 
 
 
 
0f130a4
ba65288
3391f44
28e6e92
 
 
 
 
 
 
 
 
 
 
3391f44
 
 
 
 
 
 
 
 
28e6e92
 
 
 
 
 
 
 
 
 
 
 
c2b7cdc
 
2dc58f5
c2b7cdc
af18329
 
 
 
c2b7cdc
af18329
 
c2b7cdc
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import cv2
from PIL import Image
import streamlit as st
import tempfile
import torch
import torch.nn as nn
from torchvision import transforms
from torchvision.models import resnet50
from mtcnn import MTCNN
from skimage.feature import hog
import joblib
import numpy as np

class VGGFaceEmbedding(nn.Module):
    def __init__(self):
        super(VGGFaceEmbedding, self).__init__()
        self.base_model = resnet50(pretrained=True)
        self.base_model = nn.Sequential(*list(self.base_model.children())[:-2])
        self.pooling = nn.AdaptiveAvgPool2d((1, 1))
        self.flatten = nn.Flatten()

    def forward(self, x):
        x = self.base_model(x)
        x = self.pooling(x)
        x = self.flatten(x)
        return x

class L1Dist(nn.Module):
    def __init__(self):
        super(L1Dist, self).__init__()

    def forward(self, input_embedding, validation_embedding):
        return torch.abs(input_embedding - validation_embedding)

class SiameseNetwork(nn.Module):
    def __init__(self):
        super(SiameseNetwork, self).__init__()
        self.embedding = VGGFaceEmbedding()
        self.distance = L1Dist()
        self.fc1 = nn.Linear(2048, 512)
        self.fc2 = nn.Linear(512, 1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, input_image, validation_image):
        input_embedding = self.embedding(input_image)
        validation_embedding = self.embedding(validation_image)
        distances = self.distance(input_embedding, validation_embedding)
        x = self.fc1(distances)
        x = self.fc2(x)
        x = self.sigmoid(x)
        return x

def preprocess_image_siamese(img):
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor()
    ])
    img = Image.open(img).convert("RGB")
    return transform(img)

def preprocess_image_svm(img):
    img = cv2.resize(img, (224, 224))
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    return img

def extract_hog_features(img):
    hog_features = hog(img, orientations=9, pixels_per_cell=(16, 16), cells_per_block=(4, 4))
    return hog_features

def get_face(img):
    detector = MTCNN()
    faces = detector.detect_faces(img)
    if faces:
        x1, y1, w, h = faces[0]['box']
        x1, y1 = abs(x1), abs(y1)
        x2, y2 = x1 + w, y1 + h
        return img[y1:y2, x1:x2]
    return None

def verify(image, model, person):
    
    with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_image:
        temp_image.write(image.read())
        temp_image_path = temp_image.name

        image = cv2.imread(temp_image_path)
            
        face = get_face(image)

        temp_face_path = tempfile.mktemp(suffix=".jpg")
        cv2.imwrite(temp_face_path, face)
        
        if face is not None:
            if model == "Siamese":
                siamese = SiameseNetwork()
                siamese.load_state_dict(torch.load(f'siamese_{person.lower()}.pth'))
                siamese.eval()

                face = Image.open(temp_face_path)
    
                face = preprocess_image_siamese(face)
            
                with torch.no_grad():
                    output = model(face)
                    probability = output.item()
                    pred = 1.0 if probability > 0.7 else 0.0
            
                if pred == 1:
                    st.write("Match")
                else:
                    st.write("Not Match")
    
            elif model == "HOG-SVM":
                with open(f'./svm_{person.lower()}.pkl', 'rb') as f:
                    svm = joblib.load(f)
                with open(f'./pca_{person.lower()}.pkl', 'rb') as f:
                    pca = joblib.load(f)

                face = cv2.imread(temp_face_path)
                
                face = preprocess_image_svm(face)
    
                hog = extract_hog_features(face)
    
                hog_pca = pca.transform([hog])
    
                pred = svm.predict(hog_pca)
    
                if pred == 1:
                    st.write("Match")
                else:
                    st.write("Not Match")

def main():
    st.title("Face Verification")
    
    model = st.selectbox("Select Model", ["Siamese", "HOG-SVM"])
    person = st.selectbox("Select Person", ["Theo"])
    enable = st.checkbox("Enable camera")
    captured_image = st.camera_input("Take a picture", disabled=not enable)

    if captured_image:
        verify(captured_image, model, person)

if __name__ == "__main__":
    main()