File size: 10,593 Bytes
4322c44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import gradio as gr
import re
import difflib
from typing import List, Dict, Tuple, Optional
import numpy as np
from dataclasses import dataclass

@dataclass
class Segment:
    """Represents a transcript segment"""
    speaker: str
    timestamp: str
    text: str
    raw_text: str  # For matching purposes - original text without formatting

@dataclass
class Match:
    """Represents a match between segments"""
    auto_index: int
    human_index: int
    similarity: float

def parse_auto_transcript(transcript: str) -> List[Segment]:
    """Parse the auto-generated transcript"""
    # Pattern to match "Speaker X 00:00:00" followed by text
    pattern = r"(?:\*\*)?Speaker (\w+)(?:\*\*)? (?:\*)?(\d{2}:\d{2}:\d{2})(?:\*)?\s*\n\n(.*?)(?=\n\n(?:\*\*)?Speaker |\Z)"
    segments = []
    
    for match in re.finditer(pattern, transcript, re.DOTALL):
        speaker, timestamp, text = match.groups()
        # Remove any markdown formatting for matching purposes
        raw_text = re.sub(r'\*\*|\*', '', text.strip())
        segments.append(Segment(speaker, timestamp, text.strip(), raw_text))
    
    return segments

def parse_human_transcript(transcript: str) -> List[Segment]:
    """Parse the human-edited transcript"""
    # Pattern to match both markdown and plain text formats
    # This handles both "**Speaker X** *00:00:00*" and "Speaker X 00:00:00"
    pattern = r"(?:\*\*)?(?:Speaker )?(\w+)(?:\*\*)? (?:\*)?(\d{2}:\d{2}:\d{2})(?:\*)?\s*\n\n(.*?)(?=\n\n(?:\*\*)?(?:Speaker )?|\Z)"
    segments = []
    
    for match in re.finditer(pattern, transcript, re.DOTALL):
        speaker, timestamp, text = match.groups()
        # Remove any markdown formatting for matching purposes
        raw_text = re.sub(r'\*\*|\*|\[.*?\]\(.*?\)', '', text.strip())
        segments.append(Segment(speaker, timestamp, text.strip(), raw_text))
    
    return segments

def similarity_score(text1: str, text2: str) -> float:
    """Calculate similarity between two text segments"""
    # Remove all markdown, punctuation, and lowercase for better matching
    clean1 = re.sub(r'[^\w\s]', '', text1.lower())
    clean2 = re.sub(r'[^\w\s]', '', text2.lower())
    
    # Use difflib's SequenceMatcher for similarity
    return difflib.SequenceMatcher(None, clean1, clean2).ratio()

def find_best_matches(auto_segments: List[Segment], human_segments: List[Segment]) -> List[Match]:
    """Find the best matching segments between auto and human transcripts"""
    matches = []
    used_human_indices = set()
    
    # First pass: Find obvious matches (high similarity)
    for auto_idx, auto_segment in enumerate(auto_segments):
        best_match_idx = -1
        best_similarity = 0.0
        
        for human_idx, human_segment in enumerate(human_segments):
            if human_idx in used_human_indices:
                continue
                
            similarity = similarity_score(auto_segment.raw_text, human_segment.raw_text)
            
            if similarity > best_similarity and similarity >= 0.6:  # Threshold for a good match
                best_similarity = similarity
                best_match_idx = human_idx
        
        if best_match_idx >= 0:
            matches.append(Match(auto_idx, best_match_idx, best_similarity))
            used_human_indices.add(best_match_idx)
    
    # Second pass: Try to match remaining segments with a lower threshold
    for auto_idx, auto_segment in enumerate(auto_segments):
        if any(m.auto_index == auto_idx for m in matches):
            continue
            
        best_match_idx = -1
        best_similarity = 0.0
        
        for human_idx, human_segment in enumerate(human_segments):
            if human_idx in used_human_indices:
                continue
                
            similarity = similarity_score(auto_segment.raw_text, human_segment.raw_text)
            
            if similarity > best_similarity and similarity >= 0.4:  # Lower threshold
                best_similarity = similarity
                best_match_idx = human_idx
        
        if best_match_idx >= 0:
            matches.append(Match(auto_idx, best_match_idx, best_similarity))
            used_human_indices.add(best_match_idx)
    
    return matches

def update_timestamps(auto_segments: List[Segment], human_segments: List[Segment], matches: List[Match]) -> str:
    """Update timestamps in human transcript based on matches"""
    # Create a new list for the updated segments
    updated_segments = human_segments.copy()
    
    for match in matches:
        auto_segment = auto_segments[match.auto_index]
        human_segment = human_segments[match.human_index]
        
        # Update the timestamp in the human segment
        updated_segments[match.human_index] = Segment(
            speaker=human_segment.speaker,
            timestamp=auto_segment.timestamp,
            text=human_segment.text,
            raw_text=human_segment.raw_text
        )
    
    # Generate the updated transcript
    result = []
    for segment in updated_segments:
        # Check if this is a markdown-formatted transcript
        if "**" in human_segments[0].text or "*" in human_segments[0].timestamp:
            result.append(f"**{segment.speaker}** *{segment.timestamp}*\n\n{segment.text}")
        else:
            result.append(f"Speaker {segment.speaker} {segment.timestamp}\n\n{segment.text}")
    
    return "\n\n".join(result)

def find_unmatched_segments(auto_segments: List[Segment], matches: List[Match]) -> List[int]:
    """Find segments in the auto transcript that weren't matched"""
    matched_auto_indices = {match.auto_index for match in matches}
    return [i for i in range(len(auto_segments)) if i not in matched_auto_indices]

def format_unmatched_segments(auto_segments: List[Segment], unmatched_indices: List[int], is_markdown: bool) -> str:
    """Format unmatched segments for display"""
    if not unmatched_indices:
        return "No unmatched segments found"
    
    result = []
    for idx in unmatched_indices:
        segment = auto_segments[idx]
        if is_markdown:
            result.append(f"**Speaker {segment.speaker}** *{segment.timestamp}*\n\n{segment.text}")
        else:
            result.append(f"Speaker {segment.speaker} {segment.timestamp}\n\n{segment.text}")
    
    return "### Unmatched Segments (New Content)\n\n" + "\n\n".join(result)

def process_transcripts(auto_transcript: str, human_transcript: str):
    """Process transcripts and update timestamps"""
    # Parse both transcripts
    auto_segments = parse_auto_transcript(auto_transcript)
    human_segments = parse_human_transcript(human_transcript)
    
    # Early check for empty inputs
    if not auto_segments or not human_segments:
        return "Error: Could not parse one or both transcripts. Please check the format.", "", ""
        
    # Find matches between segments
    matches = find_best_matches(auto_segments, human_segments)
    
    # Find unmatched segments
    unmatched_indices = find_unmatched_segments(auto_segments, matches)
    
    # Determine if we're using markdown
    is_markdown = "**" in human_transcript or "*" in human_transcript
    
    # Update timestamps
    updated_transcript = update_timestamps(auto_segments, human_segments, matches)
    
    # Format unmatched segments
    unmatched_segments = format_unmatched_segments(auto_segments, unmatched_indices, is_markdown)
    
    # Stats about the matching
    stats = f"### Matching Statistics\n\n"
    stats += f"- Auto-generated segments: {len(auto_segments)}\n"
    stats += f"- Human-edited segments: {len(human_segments)}\n"
    stats += f"- Matched segments: {len(matches)}\n"
    stats += f"- Unmatched segments: {len(unmatched_indices)}\n"
    
    # Add match quality histogram
    if matches:
        similarities = [match.similarity for match in matches]
        stats += f"- Average match similarity: {sum(similarities)/len(similarities):.2f}\n"
        
        # Histogram of match qualities
        bins = [0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
        hist, _ = np.histogram(similarities, bins=bins)
        stats += "\n#### Match Quality Distribution\n\n"
        for i, count in enumerate(hist):
            lower = bins[i]
            upper = bins[i+1]
            stats += f"- {lower:.1f}-{upper:.1f}: {count} matches\n"
    
    return updated_transcript, unmatched_segments, stats

# Create Gradio interface
with gr.Blocks(title="Transcript Timestamp Updater") as demo:
    gr.Markdown("""
    # Transcript Timestamp Updater
    
    This tool updates timestamps in a human-edited transcript based on a new auto-generated transcript.
    
    ## Instructions:
    1. Paste your new auto-generated transcript (with updated timestamps)
    2. Paste your human-edited transcript (with old timestamps)
    3. Click "Update Timestamps" to generate a new version of the human-edited transcript with updated timestamps
    
    The tool will try to match segments between the two transcripts and update the timestamps accordingly.
    """)
    
    with gr.Row():
        with gr.Column():
            auto_transcript = gr.Textbox(
                label="New Auto-Generated Transcript (with updated timestamps)",
                placeholder="Paste the new auto-generated transcript here...",
                lines=15
            )
        
        with gr.Column():
            human_transcript = gr.Textbox(
                label="Human-Edited Transcript (with old timestamps)",
                placeholder="Paste your human-edited transcript here...",
                lines=15
            )
    
    update_btn = gr.Button("Update Timestamps")
    
    with gr.Tabs():
        with gr.TabItem("Updated Transcript"):
            updated_transcript = gr.TextArea(
                label="Updated Human Transcript",
                placeholder="The updated transcript will appear here...",
                lines=20
            )
        
        with gr.TabItem("Unmatched Segments"):
            unmatched_segments = gr.Markdown(
                label="Unmatched Segments",
                value="Unmatched segments will appear here..."
            )
        
        with gr.TabItem("Statistics"):
            stats = gr.Markdown(
                label="Matching Statistics",
                value="Statistics will appear here..."
            )
    
    update_btn.click(
        fn=process_transcripts,
        inputs=[auto_transcript, human_transcript],
        outputs=[updated_transcript, unmatched_segments, stats]
    )

# Launch the app
if __name__ == "__main__":
    demo.launch()