dwarkesh's picture
Update app.py
1f131a4 verified
import gradio as gr
import re
import difflib
from typing import List, Dict, Tuple, Optional
from dataclasses import dataclass
@dataclass
class Segment:
"""A segment of a transcript with speaker, timestamp, and text"""
speaker: str
timestamp: str
text: str
index: int # Position in the original list
def extract_segments(transcript):
"""
Extract segments from a transcript.
Works with both formats:
- Speaker LastName 00:00:00
- **Speaker LastName** *00:00:00*
"""
# This regex matches both markdown and plain text formats
pattern = r"(?:\*\*)?([A-Za-z]+)(?:\*\*)?\s+\*?([0-9:]+)\*?\s*\n\n(.*?)(?=\n\n(?:\*\*)?[A-Za-z]+|\Z)"
segments = []
for i, match in enumerate(re.finditer(pattern, transcript, re.DOTALL)):
speaker, timestamp, text = match.groups()
segments.append(Segment(speaker, timestamp, text.strip(), i))
return segments
def clean_text_for_matching(text):
"""Clean text for better matching between transcripts"""
# Remove markdown links but keep the text
text = re.sub(r'\[([^\]]+)\]\([^)]+\)', r'\1', text)
# Remove markdown formatting
text = re.sub(r'\*\*|\*', '', text)
# Remove punctuation and normalize whitespace
text = re.sub(r'[,.;:!?()[\]{}]', ' ', text)
text = re.sub(r'\s+', ' ', text)
return text.lower().strip()
def find_best_matches(auto_segments, human_segments):
"""
Find the best matching segments between auto and human transcripts.
Uses text similarity to match segments.
"""
matches = {}
# Prepare cleaned texts for comparison
auto_cleaned_texts = [clean_text_for_matching(seg.text) for seg in auto_segments]
human_cleaned_texts = [clean_text_for_matching(seg.text) for seg in human_segments]
# For each human segment, find the best matching auto segment
for h_idx, h_text in enumerate(human_cleaned_texts):
best_match = -1
best_score = 0.6 # Minimum similarity threshold
for a_idx, a_text in enumerate(auto_cleaned_texts):
# Skip already matched segments
if a_idx in matches.values():
continue
# Calculate similarity
similarity = difflib.SequenceMatcher(None, h_text, a_text).ratio()
# If this is the best match so far, record it
if similarity > best_score:
best_score = similarity
best_match = a_idx
# If we found a good match, record it
if best_match != -1:
matches[h_idx] = best_match
return matches
def update_timestamps(human_transcript, auto_transcript):
"""
Update timestamps in human transcript using timestamps from auto transcript.
"""
# Extract segments from both transcripts
human_segments = extract_segments(human_transcript)
auto_segments = extract_segments(auto_transcript)
if not human_segments or not auto_segments:
return "Error: Could not parse transcripts. Check formatting.", ""
# Find matching segments based on text similarity
matches = find_best_matches(auto_segments, human_segments)
# Create updated transcript with new timestamps
updated_transcript = human_transcript
# Replace timestamps in reverse order to avoid position shifts
for h_idx in sorted(matches.keys(), reverse=True):
a_idx = matches[h_idx]
human_seg = human_segments[h_idx]
auto_seg = auto_segments[a_idx]
# Determine if markdown is used
is_markdown = "**" in human_transcript
# Create regex patterns to match the timestamp in the original text
if is_markdown:
pattern = fr"\*\*{human_seg.speaker}\*\*\s+\*{human_seg.timestamp}\*"
replacement = f"**{human_seg.speaker}** *{auto_seg.timestamp}*"
else:
pattern = fr"{human_seg.speaker}\s+{human_seg.timestamp}"
replacement = f"{human_seg.speaker} {auto_seg.timestamp}"
# Replace the timestamp in the transcript
updated_transcript = re.sub(pattern, replacement, updated_transcript, 1)
# Generate report
match_count = len(matches)
human_count = len(human_segments)
auto_count = len(auto_segments)
report = f"### Timestamp Update Report\n\n"
report += f"- Human segments: {human_count}\n"
report += f"- Auto segments: {auto_count}\n"
report += f"- Matched segments with updated timestamps: {match_count} ({match_count/human_count*100:.1f}%)\n"
if match_count < human_count:
report += f"- Segments not updated: {human_count - match_count}\n"
# Print some example matches for verification
if matches:
report += "\n### Example matches (for verification):\n\n"
# Show up to 5 matches
sample_matches = list(matches.items())[:5]
for h_idx, a_idx in sample_matches:
h_seg = human_segments[h_idx]
a_seg = auto_segments[a_idx]
# Truncate text samples for readability
h_preview = h_seg.text[:50] + "..." if len(h_seg.text) > 50 else h_seg.text
a_preview = a_seg.text[:50] + "..." if len(a_seg.text) > 50 else a_seg.text
report += f"- {h_seg.speaker}: timestamp changed from `{h_seg.timestamp}` to `{a_seg.timestamp}`\n"
report += f" - Human: \"{h_preview}\"\n"
report += f" - Auto: \"{a_preview}\"\n\n"
return updated_transcript, report
# Create Gradio interface
with gr.Blocks(title="Transcript Timestamp Updater") as demo:
gr.Markdown("""
# πŸŽ™οΈ Transcript Timestamp Updater
This tool updates timestamps in a human-edited transcript by taking correct timestamps from an auto-generated transcript.
## Instructions:
1. Paste your auto-generated transcript (with correct timestamps)
2. Paste your human-edited transcript (with old timestamps that need updating)
3. Click "Update Timestamps"
The tool will preserve all human edits and only update the timestamps.
""")
with gr.Row():
with gr.Column():
auto_transcript = gr.Textbox(
label="Auto-Generated Transcript (with correct timestamps)",
placeholder="Paste the auto-generated transcript here...",
lines=15
)
with gr.Column():
human_transcript = gr.Textbox(
label="Human-Edited Transcript (timestamps need updating)",
placeholder="Paste your human-edited transcript here...",
lines=15
)
update_btn = gr.Button("Update Timestamps")
with gr.Tabs():
with gr.TabItem("Updated Transcript"):
updated_transcript = gr.TextArea(
label="Updated Transcript",
placeholder="The updated transcript will appear here...",
lines=20
)
with gr.TabItem("Report"):
report = gr.Markdown(
label="Matching Report",
value="Report will appear here..."
)
update_btn.click(
fn=update_timestamps,
inputs=[human_transcript, auto_transcript],
outputs=[updated_transcript, report]
)
# Launch the app
if __name__ == "__main__":
demo.launch()