Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import gradio as gr
|
|
2 |
import re
|
3 |
import difflib
|
4 |
from typing import List, Dict, Tuple, Optional
|
5 |
-
import numpy as np
|
6 |
from dataclasses import dataclass
|
7 |
|
8 |
@dataclass
|
@@ -13,31 +12,10 @@ class Segment:
|
|
13 |
text: str
|
14 |
raw_text: str # For matching purposes - original text without formatting
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
human_index: int
|
21 |
-
similarity: float
|
22 |
-
|
23 |
-
def parse_auto_transcript(transcript: str) -> List[Segment]:
|
24 |
-
"""Parse the auto-generated transcript"""
|
25 |
-
# Pattern to match "Speaker X 00:00:00" followed by text
|
26 |
-
pattern = r"(?:\*\*)?Speaker (\w+)(?:\*\*)? (?:\*)?(\d{2}:\d{2}:\d{2})(?:\*)?\s*\n\n(.*?)(?=\n\n(?:\*\*)?Speaker |\Z)"
|
27 |
-
segments = []
|
28 |
-
|
29 |
-
for match in re.finditer(pattern, transcript, re.DOTALL):
|
30 |
-
speaker, timestamp, text = match.groups()
|
31 |
-
# Remove any markdown formatting for matching purposes
|
32 |
-
raw_text = re.sub(r'\*\*|\*', '', text.strip())
|
33 |
-
segments.append(Segment(speaker, timestamp, text.strip(), raw_text))
|
34 |
-
|
35 |
-
return segments
|
36 |
-
|
37 |
-
def parse_human_transcript(transcript: str) -> List[Segment]:
|
38 |
-
"""Parse the human-edited transcript"""
|
39 |
-
# Pattern to match both markdown and plain text formats
|
40 |
-
# This handles both "**Speaker X** *00:00:00*" and "Speaker X 00:00:00"
|
41 |
pattern = r"(?:\*\*)?(?:Speaker )?(\w+)(?:\*\*)? (?:\*)?(\d{2}:\d{2}:\d{2})(?:\*)?\s*\n\n(.*?)(?=\n\n(?:\*\*)?(?:Speaker )?|\Z)"
|
42 |
segments = []
|
43 |
|
@@ -49,186 +27,165 @@ def parse_human_transcript(transcript: str) -> List[Segment]:
|
|
49 |
|
50 |
return segments
|
51 |
|
52 |
-
def
|
53 |
-
"""
|
54 |
# Remove all markdown, punctuation, and lowercase for better matching
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
# Use difflib's SequenceMatcher for similarity
|
59 |
-
return difflib.SequenceMatcher(None, clean1, clean2).ratio()
|
60 |
|
61 |
-
def
|
62 |
-
"""
|
|
|
63 |
matches = []
|
64 |
-
used_human_indices = set()
|
65 |
|
66 |
-
#
|
67 |
-
for
|
68 |
-
|
69 |
-
best_similarity = 0.0
|
70 |
-
|
71 |
-
for human_idx, human_segment in enumerate(human_segments):
|
72 |
-
if human_idx in used_human_indices:
|
73 |
-
continue
|
74 |
-
|
75 |
-
similarity = similarity_score(auto_segment.raw_text, human_segment.raw_text)
|
76 |
-
|
77 |
-
if similarity > best_similarity and similarity >= 0.6: # Threshold for a good match
|
78 |
-
best_similarity = similarity
|
79 |
-
best_match_idx = human_idx
|
80 |
-
|
81 |
-
if best_match_idx >= 0:
|
82 |
-
matches.append(Match(auto_idx, best_match_idx, best_similarity))
|
83 |
-
used_human_indices.add(best_match_idx)
|
84 |
|
85 |
-
#
|
86 |
-
for
|
87 |
-
if any(m.auto_index == auto_idx for m in matches):
|
88 |
-
continue
|
89 |
-
|
90 |
best_match_idx = -1
|
91 |
-
best_similarity = 0
|
92 |
|
93 |
-
for
|
94 |
-
if
|
|
|
95 |
continue
|
96 |
|
97 |
-
|
|
|
98 |
|
99 |
-
if similarity > best_similarity and similarity >= 0.
|
100 |
best_similarity = similarity
|
101 |
-
best_match_idx =
|
102 |
|
103 |
if best_match_idx >= 0:
|
104 |
-
matches.append(
|
105 |
-
used_human_indices.add(best_match_idx)
|
106 |
|
107 |
return matches
|
108 |
|
109 |
-
def update_timestamps(auto_segments: List[Segment], human_segments: List[Segment], matches: List[
|
110 |
"""Update timestamps in human transcript based on matches"""
|
111 |
-
# Create a new list for the updated segments
|
112 |
updated_segments = human_segments.copy()
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
text=human_segment.text,
|
123 |
-
raw_text=human_segment.raw_text
|
124 |
)
|
125 |
|
|
|
|
|
|
|
126 |
# Generate the updated transcript
|
127 |
result = []
|
128 |
for segment in updated_segments:
|
129 |
-
|
130 |
-
if "**" in human_segments[0].text or "*" in human_segments[0].timestamp:
|
131 |
result.append(f"**{segment.speaker}** *{segment.timestamp}*\n\n{segment.text}")
|
132 |
else:
|
133 |
result.append(f"Speaker {segment.speaker} {segment.timestamp}\n\n{segment.text}")
|
134 |
|
135 |
return "\n\n".join(result)
|
136 |
|
137 |
-
def
|
138 |
-
"""
|
139 |
-
matched_auto_indices = {match
|
140 |
return [i for i in range(len(auto_segments)) if i not in matched_auto_indices]
|
141 |
|
142 |
-
def
|
143 |
-
"""
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
result = []
|
148 |
-
for idx in
|
149 |
-
segment =
|
150 |
if is_markdown:
|
151 |
-
result.append(f"**
|
152 |
else:
|
153 |
result.append(f"Speaker {segment.speaker} {segment.timestamp}\n\n{segment.text}")
|
154 |
|
155 |
-
return "
|
156 |
|
157 |
def process_transcripts(auto_transcript: str, human_transcript: str):
|
158 |
"""Process transcripts and update timestamps"""
|
159 |
-
# Parse
|
160 |
-
auto_segments =
|
161 |
-
human_segments =
|
162 |
|
163 |
-
#
|
164 |
if not auto_segments or not human_segments:
|
165 |
-
return "Error: Could not parse
|
166 |
-
|
167 |
-
#
|
168 |
-
matches =
|
169 |
|
170 |
# Find unmatched segments
|
171 |
-
|
|
|
172 |
|
173 |
-
# Determine if
|
174 |
is_markdown = "**" in human_transcript or "*" in human_transcript
|
175 |
|
176 |
# Update timestamps
|
177 |
updated_transcript = update_timestamps(auto_segments, human_segments, matches)
|
178 |
|
179 |
-
# Format
|
180 |
-
unmatched_segments = format_unmatched_segments(auto_segments, unmatched_indices, is_markdown)
|
181 |
-
|
182 |
-
# Stats about the matching
|
183 |
stats = f"### Matching Statistics\n\n"
|
184 |
stats += f"- Auto-generated segments: {len(auto_segments)}\n"
|
185 |
stats += f"- Human-edited segments: {len(human_segments)}\n"
|
186 |
stats += f"- Matched segments: {len(matches)}\n"
|
187 |
-
stats += f"- Unmatched segments: {len(
|
|
|
188 |
|
189 |
-
#
|
190 |
-
if
|
191 |
-
|
192 |
-
stats +=
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
stats += "\n#### Match Quality Distribution\n\n"
|
198 |
-
for i, count in enumerate(hist):
|
199 |
-
lower = bins[i]
|
200 |
-
upper = bins[i+1]
|
201 |
-
stats += f"- {lower:.1f}-{upper:.1f}: {count} matches\n"
|
202 |
|
203 |
-
return updated_transcript,
|
204 |
|
205 |
# Create Gradio interface
|
206 |
with gr.Blocks(title="Transcript Timestamp Updater") as demo:
|
207 |
gr.Markdown("""
|
208 |
-
# Transcript Timestamp Updater
|
209 |
|
210 |
-
This tool updates timestamps in
|
211 |
|
212 |
## Instructions:
|
213 |
1. Paste your new auto-generated transcript (with updated timestamps)
|
214 |
2. Paste your human-edited transcript (with old timestamps)
|
215 |
-
3. Click "Update Timestamps"
|
216 |
|
217 |
-
The tool will
|
218 |
""")
|
219 |
|
220 |
with gr.Row():
|
221 |
with gr.Column():
|
222 |
-
auto_transcript = gr.
|
223 |
-
label="
|
224 |
-
placeholder="Paste the
|
225 |
lines=15
|
226 |
)
|
227 |
|
228 |
with gr.Column():
|
229 |
-
human_transcript = gr.
|
230 |
label="Human-Edited Transcript (with old timestamps)",
|
231 |
-
placeholder="Paste
|
232 |
lines=15
|
233 |
)
|
234 |
|
@@ -237,27 +194,21 @@ with gr.Blocks(title="Transcript Timestamp Updater") as demo:
|
|
237 |
with gr.Tabs():
|
238 |
with gr.TabItem("Updated Transcript"):
|
239 |
updated_transcript = gr.TextArea(
|
240 |
-
label="Updated
|
241 |
placeholder="The updated transcript will appear here...",
|
242 |
lines=20
|
243 |
)
|
244 |
|
245 |
-
with gr.TabItem("Unmatched Segments"):
|
246 |
-
unmatched_segments = gr.Markdown(
|
247 |
-
label="Unmatched Segments",
|
248 |
-
value="Unmatched segments will appear here..."
|
249 |
-
)
|
250 |
-
|
251 |
with gr.TabItem("Statistics"):
|
252 |
stats = gr.Markdown(
|
253 |
-
label="
|
254 |
value="Statistics will appear here..."
|
255 |
)
|
256 |
|
257 |
update_btn.click(
|
258 |
fn=process_transcripts,
|
259 |
inputs=[auto_transcript, human_transcript],
|
260 |
-
outputs=[updated_transcript,
|
261 |
)
|
262 |
|
263 |
# Launch the app
|
|
|
2 |
import re
|
3 |
import difflib
|
4 |
from typing import List, Dict, Tuple, Optional
|
|
|
5 |
from dataclasses import dataclass
|
6 |
|
7 |
@dataclass
|
|
|
12 |
text: str
|
13 |
raw_text: str # For matching purposes - original text without formatting
|
14 |
|
15 |
+
def parse_transcript(transcript: str) -> List[Segment]:
|
16 |
+
"""Parse a transcript into segments, handling both markdown and plain formats"""
|
17 |
+
# This pattern matches both markdown and plain text formats:
|
18 |
+
# - "**Speaker X** *00:00:00*" or "Speaker X 00:00:00"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
pattern = r"(?:\*\*)?(?:Speaker )?(\w+)(?:\*\*)? (?:\*)?(\d{2}:\d{2}:\d{2})(?:\*)?\s*\n\n(.*?)(?=\n\n(?:\*\*)?(?:Speaker )?|\Z)"
|
20 |
segments = []
|
21 |
|
|
|
27 |
|
28 |
return segments
|
29 |
|
30 |
+
def clean_text_for_comparison(text: str) -> str:
|
31 |
+
"""Clean text for better comparison"""
|
32 |
# Remove all markdown, punctuation, and lowercase for better matching
|
33 |
+
text = re.sub(r'\*\*|\*|\[.*?\]\(.*?\)', '', text)
|
34 |
+
text = re.sub(r'[^\w\s]', '', text.lower())
|
35 |
+
return text.strip()
|
|
|
|
|
36 |
|
37 |
+
def match_segments(auto_segments: List[Segment], human_segments: List[Segment]) -> List[Tuple[int, int]]:
|
38 |
+
"""Match segments between auto and human transcripts using text similarity
|
39 |
+
Returns list of tuples (auto_index, human_index)"""
|
40 |
matches = []
|
|
|
41 |
|
42 |
+
# Prepare clean versions of texts for comparison
|
43 |
+
auto_texts = [clean_text_for_comparison(seg.raw_text) for seg in auto_segments]
|
44 |
+
human_texts = [clean_text_for_comparison(seg.raw_text) for seg in human_segments]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
# Try to match each human segment to an auto segment
|
47 |
+
for human_idx, human_text in enumerate(human_texts):
|
|
|
|
|
|
|
48 |
best_match_idx = -1
|
49 |
+
best_similarity = 0
|
50 |
|
51 |
+
for auto_idx, auto_text in enumerate(auto_texts):
|
52 |
+
# Skip if this auto segment is already matched
|
53 |
+
if any(match[0] == auto_idx for match in matches):
|
54 |
continue
|
55 |
|
56 |
+
# Calculate similarity
|
57 |
+
similarity = difflib.SequenceMatcher(None, auto_text, human_text).ratio()
|
58 |
|
59 |
+
if similarity > best_similarity and similarity >= 0.6: # Threshold
|
60 |
best_similarity = similarity
|
61 |
+
best_match_idx = auto_idx
|
62 |
|
63 |
if best_match_idx >= 0:
|
64 |
+
matches.append((best_match_idx, human_idx))
|
|
|
65 |
|
66 |
return matches
|
67 |
|
68 |
+
def update_timestamps(auto_segments: List[Segment], human_segments: List[Segment], matches: List[Tuple[int, int]]) -> str:
|
69 |
"""Update timestamps in human transcript based on matches"""
|
|
|
70 |
updated_segments = human_segments.copy()
|
71 |
|
72 |
+
# Update timestamps based on matches
|
73 |
+
for auto_idx, human_idx in matches:
|
74 |
+
# Keep the human-edited text, update only the timestamp
|
75 |
+
updated_segments[human_idx] = Segment(
|
76 |
+
speaker=human_segments[human_idx].speaker,
|
77 |
+
timestamp=auto_segments[auto_idx].timestamp,
|
78 |
+
text=human_segments[human_idx].text,
|
79 |
+
raw_text=human_segments[human_idx].raw_text
|
|
|
|
|
80 |
)
|
81 |
|
82 |
+
# Determine if the human transcript uses markdown formatting
|
83 |
+
is_markdown = "**" in human_segments[0].text or "*" in human_segments[0].timestamp if human_segments else False
|
84 |
+
|
85 |
# Generate the updated transcript
|
86 |
result = []
|
87 |
for segment in updated_segments:
|
88 |
+
if is_markdown:
|
|
|
89 |
result.append(f"**{segment.speaker}** *{segment.timestamp}*\n\n{segment.text}")
|
90 |
else:
|
91 |
result.append(f"Speaker {segment.speaker} {segment.timestamp}\n\n{segment.text}")
|
92 |
|
93 |
return "\n\n".join(result)
|
94 |
|
95 |
+
def get_unmatched_auto_segments(auto_segments: List[Segment], matches: List[Tuple[int, int]]) -> List[int]:
|
96 |
+
"""Get indices of auto segments that weren't matched to any human segment"""
|
97 |
+
matched_auto_indices = {match[0] for match in matches}
|
98 |
return [i for i in range(len(auto_segments)) if i not in matched_auto_indices]
|
99 |
|
100 |
+
def get_unmatched_human_segments(human_segments: List[Segment], matches: List[Tuple[int, int]]) -> List[int]:
|
101 |
+
"""Get indices of human segments that weren't matched to any auto segment"""
|
102 |
+
matched_human_indices = {match[1] for match in matches}
|
103 |
+
return [i for i in range(len(human_segments)) if i not in matched_human_indices]
|
104 |
+
|
105 |
+
def format_segments(segments: List[Segment], indices: List[int], is_markdown: bool) -> str:
|
106 |
+
"""Format segments for display"""
|
107 |
+
if not indices:
|
108 |
+
return "None"
|
109 |
|
110 |
result = []
|
111 |
+
for idx in indices:
|
112 |
+
segment = segments[idx]
|
113 |
if is_markdown:
|
114 |
+
result.append(f"**{segment.speaker}** *{segment.timestamp}*\n\n{segment.text}")
|
115 |
else:
|
116 |
result.append(f"Speaker {segment.speaker} {segment.timestamp}\n\n{segment.text}")
|
117 |
|
118 |
+
return "\n\n".join(result)
|
119 |
|
120 |
def process_transcripts(auto_transcript: str, human_transcript: str):
|
121 |
"""Process transcripts and update timestamps"""
|
122 |
+
# Parse transcripts
|
123 |
+
auto_segments = parse_transcript(auto_transcript)
|
124 |
+
human_segments = parse_transcript(human_transcript)
|
125 |
|
126 |
+
# Basic validation
|
127 |
if not auto_segments or not human_segments:
|
128 |
+
return "Error: Could not parse transcripts. Check formatting.", "", ""
|
129 |
+
|
130 |
+
# Match segments
|
131 |
+
matches = match_segments(auto_segments, human_segments)
|
132 |
|
133 |
# Find unmatched segments
|
134 |
+
unmatched_auto = get_unmatched_auto_segments(auto_segments, matches)
|
135 |
+
unmatched_human = get_unmatched_human_segments(human_segments, matches)
|
136 |
|
137 |
+
# Determine if the format uses markdown
|
138 |
is_markdown = "**" in human_transcript or "*" in human_transcript
|
139 |
|
140 |
# Update timestamps
|
141 |
updated_transcript = update_timestamps(auto_segments, human_segments, matches)
|
142 |
|
143 |
+
# Format statistics
|
|
|
|
|
|
|
144 |
stats = f"### Matching Statistics\n\n"
|
145 |
stats += f"- Auto-generated segments: {len(auto_segments)}\n"
|
146 |
stats += f"- Human-edited segments: {len(human_segments)}\n"
|
147 |
stats += f"- Matched segments: {len(matches)}\n"
|
148 |
+
stats += f"- Unmatched auto segments (new content): {len(unmatched_auto)}\n"
|
149 |
+
stats += f"- Unmatched human segments (removed content): {len(unmatched_human)}\n"
|
150 |
|
151 |
+
# Format unmatched segments
|
152 |
+
if unmatched_auto:
|
153 |
+
stats += f"\n### New Content (In Auto-generated but not in Human-edited)\n\n"
|
154 |
+
stats += format_segments(auto_segments, unmatched_auto, is_markdown)
|
155 |
+
|
156 |
+
if unmatched_human:
|
157 |
+
stats += f"\n### Removed Content (In Human-edited but not in Auto-generated)\n\n"
|
158 |
+
stats += format_segments(human_segments, unmatched_human, is_markdown)
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
+
return updated_transcript, stats
|
161 |
|
162 |
# Create Gradio interface
|
163 |
with gr.Blocks(title="Transcript Timestamp Updater") as demo:
|
164 |
gr.Markdown("""
|
165 |
+
# 🎙️ Transcript Timestamp Updater
|
166 |
|
167 |
+
This tool updates timestamps in human-edited transcripts based on auto-generated transcripts.
|
168 |
|
169 |
## Instructions:
|
170 |
1. Paste your new auto-generated transcript (with updated timestamps)
|
171 |
2. Paste your human-edited transcript (with old timestamps)
|
172 |
+
3. Click "Update Timestamps"
|
173 |
|
174 |
+
The tool will match segments between transcripts and update the timestamps while preserving all human edits.
|
175 |
""")
|
176 |
|
177 |
with gr.Row():
|
178 |
with gr.Column():
|
179 |
+
auto_transcript = gr.TextArea(
|
180 |
+
label="Auto-Generated Transcript (with new timestamps)",
|
181 |
+
placeholder="Paste the auto-generated transcript here...",
|
182 |
lines=15
|
183 |
)
|
184 |
|
185 |
with gr.Column():
|
186 |
+
human_transcript = gr.TextArea(
|
187 |
label="Human-Edited Transcript (with old timestamps)",
|
188 |
+
placeholder="Paste the human-edited transcript here...",
|
189 |
lines=15
|
190 |
)
|
191 |
|
|
|
194 |
with gr.Tabs():
|
195 |
with gr.TabItem("Updated Transcript"):
|
196 |
updated_transcript = gr.TextArea(
|
197 |
+
label="Updated Transcript",
|
198 |
placeholder="The updated transcript will appear here...",
|
199 |
lines=20
|
200 |
)
|
201 |
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
with gr.TabItem("Statistics"):
|
203 |
stats = gr.Markdown(
|
204 |
+
label="Statistics",
|
205 |
value="Statistics will appear here..."
|
206 |
)
|
207 |
|
208 |
update_btn.click(
|
209 |
fn=process_transcripts,
|
210 |
inputs=[auto_transcript, human_transcript],
|
211 |
+
outputs=[updated_transcript, stats]
|
212 |
)
|
213 |
|
214 |
# Launch the app
|