Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,7 +2,6 @@ import gradio as gr
|
|
| 2 |
import re
|
| 3 |
import difflib
|
| 4 |
from typing import List, Dict, Tuple, Optional
|
| 5 |
-
import numpy as np
|
| 6 |
from dataclasses import dataclass
|
| 7 |
|
| 8 |
@dataclass
|
|
@@ -13,31 +12,10 @@ class Segment:
|
|
| 13 |
text: str
|
| 14 |
raw_text: str # For matching purposes - original text without formatting
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
human_index: int
|
| 21 |
-
similarity: float
|
| 22 |
-
|
| 23 |
-
def parse_auto_transcript(transcript: str) -> List[Segment]:
|
| 24 |
-
"""Parse the auto-generated transcript"""
|
| 25 |
-
# Pattern to match "Speaker X 00:00:00" followed by text
|
| 26 |
-
pattern = r"(?:\*\*)?Speaker (\w+)(?:\*\*)? (?:\*)?(\d{2}:\d{2}:\d{2})(?:\*)?\s*\n\n(.*?)(?=\n\n(?:\*\*)?Speaker |\Z)"
|
| 27 |
-
segments = []
|
| 28 |
-
|
| 29 |
-
for match in re.finditer(pattern, transcript, re.DOTALL):
|
| 30 |
-
speaker, timestamp, text = match.groups()
|
| 31 |
-
# Remove any markdown formatting for matching purposes
|
| 32 |
-
raw_text = re.sub(r'\*\*|\*', '', text.strip())
|
| 33 |
-
segments.append(Segment(speaker, timestamp, text.strip(), raw_text))
|
| 34 |
-
|
| 35 |
-
return segments
|
| 36 |
-
|
| 37 |
-
def parse_human_transcript(transcript: str) -> List[Segment]:
|
| 38 |
-
"""Parse the human-edited transcript"""
|
| 39 |
-
# Pattern to match both markdown and plain text formats
|
| 40 |
-
# This handles both "**Speaker X** *00:00:00*" and "Speaker X 00:00:00"
|
| 41 |
pattern = r"(?:\*\*)?(?:Speaker )?(\w+)(?:\*\*)? (?:\*)?(\d{2}:\d{2}:\d{2})(?:\*)?\s*\n\n(.*?)(?=\n\n(?:\*\*)?(?:Speaker )?|\Z)"
|
| 42 |
segments = []
|
| 43 |
|
|
@@ -49,186 +27,165 @@ def parse_human_transcript(transcript: str) -> List[Segment]:
|
|
| 49 |
|
| 50 |
return segments
|
| 51 |
|
| 52 |
-
def
|
| 53 |
-
"""
|
| 54 |
# Remove all markdown, punctuation, and lowercase for better matching
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
# Use difflib's SequenceMatcher for similarity
|
| 59 |
-
return difflib.SequenceMatcher(None, clean1, clean2).ratio()
|
| 60 |
|
| 61 |
-
def
|
| 62 |
-
"""
|
|
|
|
| 63 |
matches = []
|
| 64 |
-
used_human_indices = set()
|
| 65 |
|
| 66 |
-
#
|
| 67 |
-
for
|
| 68 |
-
|
| 69 |
-
best_similarity = 0.0
|
| 70 |
-
|
| 71 |
-
for human_idx, human_segment in enumerate(human_segments):
|
| 72 |
-
if human_idx in used_human_indices:
|
| 73 |
-
continue
|
| 74 |
-
|
| 75 |
-
similarity = similarity_score(auto_segment.raw_text, human_segment.raw_text)
|
| 76 |
-
|
| 77 |
-
if similarity > best_similarity and similarity >= 0.6: # Threshold for a good match
|
| 78 |
-
best_similarity = similarity
|
| 79 |
-
best_match_idx = human_idx
|
| 80 |
-
|
| 81 |
-
if best_match_idx >= 0:
|
| 82 |
-
matches.append(Match(auto_idx, best_match_idx, best_similarity))
|
| 83 |
-
used_human_indices.add(best_match_idx)
|
| 84 |
|
| 85 |
-
#
|
| 86 |
-
for
|
| 87 |
-
if any(m.auto_index == auto_idx for m in matches):
|
| 88 |
-
continue
|
| 89 |
-
|
| 90 |
best_match_idx = -1
|
| 91 |
-
best_similarity = 0
|
| 92 |
|
| 93 |
-
for
|
| 94 |
-
if
|
|
|
|
| 95 |
continue
|
| 96 |
|
| 97 |
-
|
|
|
|
| 98 |
|
| 99 |
-
if similarity > best_similarity and similarity >= 0.
|
| 100 |
best_similarity = similarity
|
| 101 |
-
best_match_idx =
|
| 102 |
|
| 103 |
if best_match_idx >= 0:
|
| 104 |
-
matches.append(
|
| 105 |
-
used_human_indices.add(best_match_idx)
|
| 106 |
|
| 107 |
return matches
|
| 108 |
|
| 109 |
-
def update_timestamps(auto_segments: List[Segment], human_segments: List[Segment], matches: List[
|
| 110 |
"""Update timestamps in human transcript based on matches"""
|
| 111 |
-
# Create a new list for the updated segments
|
| 112 |
updated_segments = human_segments.copy()
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
text=human_segment.text,
|
| 123 |
-
raw_text=human_segment.raw_text
|
| 124 |
)
|
| 125 |
|
|
|
|
|
|
|
|
|
|
| 126 |
# Generate the updated transcript
|
| 127 |
result = []
|
| 128 |
for segment in updated_segments:
|
| 129 |
-
|
| 130 |
-
if "**" in human_segments[0].text or "*" in human_segments[0].timestamp:
|
| 131 |
result.append(f"**{segment.speaker}** *{segment.timestamp}*\n\n{segment.text}")
|
| 132 |
else:
|
| 133 |
result.append(f"Speaker {segment.speaker} {segment.timestamp}\n\n{segment.text}")
|
| 134 |
|
| 135 |
return "\n\n".join(result)
|
| 136 |
|
| 137 |
-
def
|
| 138 |
-
"""
|
| 139 |
-
matched_auto_indices = {match
|
| 140 |
return [i for i in range(len(auto_segments)) if i not in matched_auto_indices]
|
| 141 |
|
| 142 |
-
def
|
| 143 |
-
"""
|
| 144 |
-
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
result = []
|
| 148 |
-
for idx in
|
| 149 |
-
segment =
|
| 150 |
if is_markdown:
|
| 151 |
-
result.append(f"**
|
| 152 |
else:
|
| 153 |
result.append(f"Speaker {segment.speaker} {segment.timestamp}\n\n{segment.text}")
|
| 154 |
|
| 155 |
-
return "
|
| 156 |
|
| 157 |
def process_transcripts(auto_transcript: str, human_transcript: str):
|
| 158 |
"""Process transcripts and update timestamps"""
|
| 159 |
-
# Parse
|
| 160 |
-
auto_segments =
|
| 161 |
-
human_segments =
|
| 162 |
|
| 163 |
-
#
|
| 164 |
if not auto_segments or not human_segments:
|
| 165 |
-
return "Error: Could not parse
|
| 166 |
-
|
| 167 |
-
#
|
| 168 |
-
matches =
|
| 169 |
|
| 170 |
# Find unmatched segments
|
| 171 |
-
|
|
|
|
| 172 |
|
| 173 |
-
# Determine if
|
| 174 |
is_markdown = "**" in human_transcript or "*" in human_transcript
|
| 175 |
|
| 176 |
# Update timestamps
|
| 177 |
updated_transcript = update_timestamps(auto_segments, human_segments, matches)
|
| 178 |
|
| 179 |
-
# Format
|
| 180 |
-
unmatched_segments = format_unmatched_segments(auto_segments, unmatched_indices, is_markdown)
|
| 181 |
-
|
| 182 |
-
# Stats about the matching
|
| 183 |
stats = f"### Matching Statistics\n\n"
|
| 184 |
stats += f"- Auto-generated segments: {len(auto_segments)}\n"
|
| 185 |
stats += f"- Human-edited segments: {len(human_segments)}\n"
|
| 186 |
stats += f"- Matched segments: {len(matches)}\n"
|
| 187 |
-
stats += f"- Unmatched segments: {len(
|
|
|
|
| 188 |
|
| 189 |
-
#
|
| 190 |
-
if
|
| 191 |
-
|
| 192 |
-
stats +=
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
stats += "\n#### Match Quality Distribution\n\n"
|
| 198 |
-
for i, count in enumerate(hist):
|
| 199 |
-
lower = bins[i]
|
| 200 |
-
upper = bins[i+1]
|
| 201 |
-
stats += f"- {lower:.1f}-{upper:.1f}: {count} matches\n"
|
| 202 |
|
| 203 |
-
return updated_transcript,
|
| 204 |
|
| 205 |
# Create Gradio interface
|
| 206 |
with gr.Blocks(title="Transcript Timestamp Updater") as demo:
|
| 207 |
gr.Markdown("""
|
| 208 |
-
# Transcript Timestamp Updater
|
| 209 |
|
| 210 |
-
This tool updates timestamps in
|
| 211 |
|
| 212 |
## Instructions:
|
| 213 |
1. Paste your new auto-generated transcript (with updated timestamps)
|
| 214 |
2. Paste your human-edited transcript (with old timestamps)
|
| 215 |
-
3. Click "Update Timestamps"
|
| 216 |
|
| 217 |
-
The tool will
|
| 218 |
""")
|
| 219 |
|
| 220 |
with gr.Row():
|
| 221 |
with gr.Column():
|
| 222 |
-
auto_transcript = gr.
|
| 223 |
-
label="
|
| 224 |
-
placeholder="Paste the
|
| 225 |
lines=15
|
| 226 |
)
|
| 227 |
|
| 228 |
with gr.Column():
|
| 229 |
-
human_transcript = gr.
|
| 230 |
label="Human-Edited Transcript (with old timestamps)",
|
| 231 |
-
placeholder="Paste
|
| 232 |
lines=15
|
| 233 |
)
|
| 234 |
|
|
@@ -237,27 +194,21 @@ with gr.Blocks(title="Transcript Timestamp Updater") as demo:
|
|
| 237 |
with gr.Tabs():
|
| 238 |
with gr.TabItem("Updated Transcript"):
|
| 239 |
updated_transcript = gr.TextArea(
|
| 240 |
-
label="Updated
|
| 241 |
placeholder="The updated transcript will appear here...",
|
| 242 |
lines=20
|
| 243 |
)
|
| 244 |
|
| 245 |
-
with gr.TabItem("Unmatched Segments"):
|
| 246 |
-
unmatched_segments = gr.Markdown(
|
| 247 |
-
label="Unmatched Segments",
|
| 248 |
-
value="Unmatched segments will appear here..."
|
| 249 |
-
)
|
| 250 |
-
|
| 251 |
with gr.TabItem("Statistics"):
|
| 252 |
stats = gr.Markdown(
|
| 253 |
-
label="
|
| 254 |
value="Statistics will appear here..."
|
| 255 |
)
|
| 256 |
|
| 257 |
update_btn.click(
|
| 258 |
fn=process_transcripts,
|
| 259 |
inputs=[auto_transcript, human_transcript],
|
| 260 |
-
outputs=[updated_transcript,
|
| 261 |
)
|
| 262 |
|
| 263 |
# Launch the app
|
|
|
|
| 2 |
import re
|
| 3 |
import difflib
|
| 4 |
from typing import List, Dict, Tuple, Optional
|
|
|
|
| 5 |
from dataclasses import dataclass
|
| 6 |
|
| 7 |
@dataclass
|
|
|
|
| 12 |
text: str
|
| 13 |
raw_text: str # For matching purposes - original text without formatting
|
| 14 |
|
| 15 |
+
def parse_transcript(transcript: str) -> List[Segment]:
|
| 16 |
+
"""Parse a transcript into segments, handling both markdown and plain formats"""
|
| 17 |
+
# This pattern matches both markdown and plain text formats:
|
| 18 |
+
# - "**Speaker X** *00:00:00*" or "Speaker X 00:00:00"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
pattern = r"(?:\*\*)?(?:Speaker )?(\w+)(?:\*\*)? (?:\*)?(\d{2}:\d{2}:\d{2})(?:\*)?\s*\n\n(.*?)(?=\n\n(?:\*\*)?(?:Speaker )?|\Z)"
|
| 20 |
segments = []
|
| 21 |
|
|
|
|
| 27 |
|
| 28 |
return segments
|
| 29 |
|
| 30 |
+
def clean_text_for_comparison(text: str) -> str:
|
| 31 |
+
"""Clean text for better comparison"""
|
| 32 |
# Remove all markdown, punctuation, and lowercase for better matching
|
| 33 |
+
text = re.sub(r'\*\*|\*|\[.*?\]\(.*?\)', '', text)
|
| 34 |
+
text = re.sub(r'[^\w\s]', '', text.lower())
|
| 35 |
+
return text.strip()
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
def match_segments(auto_segments: List[Segment], human_segments: List[Segment]) -> List[Tuple[int, int]]:
|
| 38 |
+
"""Match segments between auto and human transcripts using text similarity
|
| 39 |
+
Returns list of tuples (auto_index, human_index)"""
|
| 40 |
matches = []
|
|
|
|
| 41 |
|
| 42 |
+
# Prepare clean versions of texts for comparison
|
| 43 |
+
auto_texts = [clean_text_for_comparison(seg.raw_text) for seg in auto_segments]
|
| 44 |
+
human_texts = [clean_text_for_comparison(seg.raw_text) for seg in human_segments]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
# Try to match each human segment to an auto segment
|
| 47 |
+
for human_idx, human_text in enumerate(human_texts):
|
|
|
|
|
|
|
|
|
|
| 48 |
best_match_idx = -1
|
| 49 |
+
best_similarity = 0
|
| 50 |
|
| 51 |
+
for auto_idx, auto_text in enumerate(auto_texts):
|
| 52 |
+
# Skip if this auto segment is already matched
|
| 53 |
+
if any(match[0] == auto_idx for match in matches):
|
| 54 |
continue
|
| 55 |
|
| 56 |
+
# Calculate similarity
|
| 57 |
+
similarity = difflib.SequenceMatcher(None, auto_text, human_text).ratio()
|
| 58 |
|
| 59 |
+
if similarity > best_similarity and similarity >= 0.6: # Threshold
|
| 60 |
best_similarity = similarity
|
| 61 |
+
best_match_idx = auto_idx
|
| 62 |
|
| 63 |
if best_match_idx >= 0:
|
| 64 |
+
matches.append((best_match_idx, human_idx))
|
|
|
|
| 65 |
|
| 66 |
return matches
|
| 67 |
|
| 68 |
+
def update_timestamps(auto_segments: List[Segment], human_segments: List[Segment], matches: List[Tuple[int, int]]) -> str:
|
| 69 |
"""Update timestamps in human transcript based on matches"""
|
|
|
|
| 70 |
updated_segments = human_segments.copy()
|
| 71 |
|
| 72 |
+
# Update timestamps based on matches
|
| 73 |
+
for auto_idx, human_idx in matches:
|
| 74 |
+
# Keep the human-edited text, update only the timestamp
|
| 75 |
+
updated_segments[human_idx] = Segment(
|
| 76 |
+
speaker=human_segments[human_idx].speaker,
|
| 77 |
+
timestamp=auto_segments[auto_idx].timestamp,
|
| 78 |
+
text=human_segments[human_idx].text,
|
| 79 |
+
raw_text=human_segments[human_idx].raw_text
|
|
|
|
|
|
|
| 80 |
)
|
| 81 |
|
| 82 |
+
# Determine if the human transcript uses markdown formatting
|
| 83 |
+
is_markdown = "**" in human_segments[0].text or "*" in human_segments[0].timestamp if human_segments else False
|
| 84 |
+
|
| 85 |
# Generate the updated transcript
|
| 86 |
result = []
|
| 87 |
for segment in updated_segments:
|
| 88 |
+
if is_markdown:
|
|
|
|
| 89 |
result.append(f"**{segment.speaker}** *{segment.timestamp}*\n\n{segment.text}")
|
| 90 |
else:
|
| 91 |
result.append(f"Speaker {segment.speaker} {segment.timestamp}\n\n{segment.text}")
|
| 92 |
|
| 93 |
return "\n\n".join(result)
|
| 94 |
|
| 95 |
+
def get_unmatched_auto_segments(auto_segments: List[Segment], matches: List[Tuple[int, int]]) -> List[int]:
|
| 96 |
+
"""Get indices of auto segments that weren't matched to any human segment"""
|
| 97 |
+
matched_auto_indices = {match[0] for match in matches}
|
| 98 |
return [i for i in range(len(auto_segments)) if i not in matched_auto_indices]
|
| 99 |
|
| 100 |
+
def get_unmatched_human_segments(human_segments: List[Segment], matches: List[Tuple[int, int]]) -> List[int]:
|
| 101 |
+
"""Get indices of human segments that weren't matched to any auto segment"""
|
| 102 |
+
matched_human_indices = {match[1] for match in matches}
|
| 103 |
+
return [i for i in range(len(human_segments)) if i not in matched_human_indices]
|
| 104 |
+
|
| 105 |
+
def format_segments(segments: List[Segment], indices: List[int], is_markdown: bool) -> str:
|
| 106 |
+
"""Format segments for display"""
|
| 107 |
+
if not indices:
|
| 108 |
+
return "None"
|
| 109 |
|
| 110 |
result = []
|
| 111 |
+
for idx in indices:
|
| 112 |
+
segment = segments[idx]
|
| 113 |
if is_markdown:
|
| 114 |
+
result.append(f"**{segment.speaker}** *{segment.timestamp}*\n\n{segment.text}")
|
| 115 |
else:
|
| 116 |
result.append(f"Speaker {segment.speaker} {segment.timestamp}\n\n{segment.text}")
|
| 117 |
|
| 118 |
+
return "\n\n".join(result)
|
| 119 |
|
| 120 |
def process_transcripts(auto_transcript: str, human_transcript: str):
|
| 121 |
"""Process transcripts and update timestamps"""
|
| 122 |
+
# Parse transcripts
|
| 123 |
+
auto_segments = parse_transcript(auto_transcript)
|
| 124 |
+
human_segments = parse_transcript(human_transcript)
|
| 125 |
|
| 126 |
+
# Basic validation
|
| 127 |
if not auto_segments or not human_segments:
|
| 128 |
+
return "Error: Could not parse transcripts. Check formatting.", "", ""
|
| 129 |
+
|
| 130 |
+
# Match segments
|
| 131 |
+
matches = match_segments(auto_segments, human_segments)
|
| 132 |
|
| 133 |
# Find unmatched segments
|
| 134 |
+
unmatched_auto = get_unmatched_auto_segments(auto_segments, matches)
|
| 135 |
+
unmatched_human = get_unmatched_human_segments(human_segments, matches)
|
| 136 |
|
| 137 |
+
# Determine if the format uses markdown
|
| 138 |
is_markdown = "**" in human_transcript or "*" in human_transcript
|
| 139 |
|
| 140 |
# Update timestamps
|
| 141 |
updated_transcript = update_timestamps(auto_segments, human_segments, matches)
|
| 142 |
|
| 143 |
+
# Format statistics
|
|
|
|
|
|
|
|
|
|
| 144 |
stats = f"### Matching Statistics\n\n"
|
| 145 |
stats += f"- Auto-generated segments: {len(auto_segments)}\n"
|
| 146 |
stats += f"- Human-edited segments: {len(human_segments)}\n"
|
| 147 |
stats += f"- Matched segments: {len(matches)}\n"
|
| 148 |
+
stats += f"- Unmatched auto segments (new content): {len(unmatched_auto)}\n"
|
| 149 |
+
stats += f"- Unmatched human segments (removed content): {len(unmatched_human)}\n"
|
| 150 |
|
| 151 |
+
# Format unmatched segments
|
| 152 |
+
if unmatched_auto:
|
| 153 |
+
stats += f"\n### New Content (In Auto-generated but not in Human-edited)\n\n"
|
| 154 |
+
stats += format_segments(auto_segments, unmatched_auto, is_markdown)
|
| 155 |
+
|
| 156 |
+
if unmatched_human:
|
| 157 |
+
stats += f"\n### Removed Content (In Human-edited but not in Auto-generated)\n\n"
|
| 158 |
+
stats += format_segments(human_segments, unmatched_human, is_markdown)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
+
return updated_transcript, stats
|
| 161 |
|
| 162 |
# Create Gradio interface
|
| 163 |
with gr.Blocks(title="Transcript Timestamp Updater") as demo:
|
| 164 |
gr.Markdown("""
|
| 165 |
+
# 🎙️ Transcript Timestamp Updater
|
| 166 |
|
| 167 |
+
This tool updates timestamps in human-edited transcripts based on auto-generated transcripts.
|
| 168 |
|
| 169 |
## Instructions:
|
| 170 |
1. Paste your new auto-generated transcript (with updated timestamps)
|
| 171 |
2. Paste your human-edited transcript (with old timestamps)
|
| 172 |
+
3. Click "Update Timestamps"
|
| 173 |
|
| 174 |
+
The tool will match segments between transcripts and update the timestamps while preserving all human edits.
|
| 175 |
""")
|
| 176 |
|
| 177 |
with gr.Row():
|
| 178 |
with gr.Column():
|
| 179 |
+
auto_transcript = gr.TextArea(
|
| 180 |
+
label="Auto-Generated Transcript (with new timestamps)",
|
| 181 |
+
placeholder="Paste the auto-generated transcript here...",
|
| 182 |
lines=15
|
| 183 |
)
|
| 184 |
|
| 185 |
with gr.Column():
|
| 186 |
+
human_transcript = gr.TextArea(
|
| 187 |
label="Human-Edited Transcript (with old timestamps)",
|
| 188 |
+
placeholder="Paste the human-edited transcript here...",
|
| 189 |
lines=15
|
| 190 |
)
|
| 191 |
|
|
|
|
| 194 |
with gr.Tabs():
|
| 195 |
with gr.TabItem("Updated Transcript"):
|
| 196 |
updated_transcript = gr.TextArea(
|
| 197 |
+
label="Updated Transcript",
|
| 198 |
placeholder="The updated transcript will appear here...",
|
| 199 |
lines=20
|
| 200 |
)
|
| 201 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
with gr.TabItem("Statistics"):
|
| 203 |
stats = gr.Markdown(
|
| 204 |
+
label="Statistics",
|
| 205 |
value="Statistics will appear here..."
|
| 206 |
)
|
| 207 |
|
| 208 |
update_btn.click(
|
| 209 |
fn=process_transcripts,
|
| 210 |
inputs=[auto_transcript, human_transcript],
|
| 211 |
+
outputs=[updated_transcript, stats]
|
| 212 |
)
|
| 213 |
|
| 214 |
# Launch the app
|