Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,195 +1,248 @@
|
|
1 |
import gradio as gr
|
2 |
import re
|
3 |
import difflib
|
|
|
4 |
from typing import List, Dict, Tuple, Optional
|
5 |
from dataclasses import dataclass
|
|
|
6 |
|
7 |
@dataclass
|
8 |
class Segment:
|
9 |
-
"""
|
10 |
speaker: str
|
11 |
timestamp: str
|
12 |
text: str
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def parse_transcript(transcript: str) -> List[Segment]:
|
16 |
-
"""
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
21 |
|
22 |
-
|
|
|
23 |
speaker, timestamp, text = match.groups()
|
24 |
-
|
25 |
-
|
26 |
-
segments.append(Segment(speaker, timestamp,
|
27 |
|
28 |
return segments
|
29 |
|
30 |
-
def
|
31 |
-
"""
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
|
51 |
-
for
|
52 |
-
|
53 |
-
if any(match[0] == auto_idx for match in matches):
|
54 |
-
continue
|
55 |
-
|
56 |
-
# Calculate similarity
|
57 |
-
similarity = difflib.SequenceMatcher(None, auto_text, human_text).ratio()
|
58 |
|
59 |
-
if similarity > best_similarity
|
60 |
-
|
61 |
-
|
|
|
|
|
62 |
|
63 |
-
if
|
64 |
-
|
|
|
65 |
|
66 |
-
return
|
67 |
|
68 |
-
def
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
# Generate the updated transcript
|
86 |
-
result = []
|
87 |
-
for segment in updated_segments:
|
88 |
-
if is_markdown:
|
89 |
-
result.append(f"**{segment.speaker}** *{segment.timestamp}*\n\n{segment.text}")
|
90 |
else:
|
91 |
-
|
|
|
|
|
|
|
|
|
92 |
|
93 |
-
return "\n\n".join(
|
94 |
-
|
95 |
-
def get_unmatched_auto_segments(auto_segments: List[Segment], matches: List[Tuple[int, int]]) -> List[int]:
|
96 |
-
"""Get indices of auto segments that weren't matched to any human segment"""
|
97 |
-
matched_auto_indices = {match[0] for match in matches}
|
98 |
-
return [i for i in range(len(auto_segments)) if i not in matched_auto_indices]
|
99 |
|
100 |
-
def
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
def
|
106 |
-
"""
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
-
|
|
|
119 |
|
120 |
-
def
|
121 |
-
"""
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
matches = match_segments(auto_segments, human_segments)
|
132 |
-
|
133 |
-
# Find unmatched segments
|
134 |
-
unmatched_auto = get_unmatched_auto_segments(auto_segments, matches)
|
135 |
-
unmatched_human = get_unmatched_human_segments(human_segments, matches)
|
136 |
-
|
137 |
-
# Determine if the format uses markdown
|
138 |
-
is_markdown = "**" in human_transcript or "*" in human_transcript
|
139 |
-
|
140 |
-
# Update timestamps
|
141 |
-
updated_transcript = update_timestamps(auto_segments, human_segments, matches)
|
142 |
-
|
143 |
-
# Format statistics
|
144 |
-
stats = f"### Matching Statistics\n\n"
|
145 |
-
stats += f"- Auto-generated segments: {len(auto_segments)}\n"
|
146 |
-
stats += f"- Human-edited segments: {len(human_segments)}\n"
|
147 |
-
stats += f"- Matched segments: {len(matches)}\n"
|
148 |
-
stats += f"- Unmatched auto segments (new content): {len(unmatched_auto)}\n"
|
149 |
-
stats += f"- Unmatched human segments (removed content): {len(unmatched_human)}\n"
|
150 |
-
|
151 |
-
# Format unmatched segments
|
152 |
-
if unmatched_auto:
|
153 |
-
stats += f"\n### New Content (In Auto-generated but not in Human-edited)\n\n"
|
154 |
-
stats += format_segments(auto_segments, unmatched_auto, is_markdown)
|
155 |
-
|
156 |
-
if unmatched_human:
|
157 |
-
stats += f"\n### Removed Content (In Human-edited but not in Auto-generated)\n\n"
|
158 |
-
stats += format_segments(human_segments, unmatched_human, is_markdown)
|
159 |
-
|
160 |
-
return updated_transcript, stats
|
161 |
|
162 |
# Create Gradio interface
|
163 |
-
with gr.Blocks(title="Transcript Timestamp
|
164 |
gr.Markdown("""
|
165 |
-
# 🎙️ Transcript Timestamp
|
166 |
|
167 |
-
This tool updates timestamps in human-edited transcripts based on auto-generated transcripts.
|
168 |
|
169 |
## Instructions:
|
170 |
-
1.
|
171 |
-
2.
|
172 |
-
3. Click "
|
173 |
|
174 |
-
The tool will match segments between transcripts and update the timestamps while preserving all human edits.
|
175 |
""")
|
176 |
|
177 |
with gr.Row():
|
178 |
with gr.Column():
|
179 |
-
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
placeholder="Paste the auto-generated transcript here...",
|
182 |
-
lines=15
|
|
|
183 |
)
|
184 |
|
185 |
with gr.Column():
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
placeholder="Paste the human-edited transcript here...",
|
189 |
-
lines=15
|
|
|
190 |
)
|
191 |
|
192 |
-
update_btn = gr.Button("
|
193 |
|
194 |
with gr.Tabs():
|
195 |
with gr.TabItem("Updated Transcript"):
|
@@ -198,19 +251,63 @@ with gr.Blocks(title="Transcript Timestamp Updater") as demo:
|
|
198 |
placeholder="The updated transcript will appear here...",
|
199 |
lines=20
|
200 |
)
|
|
|
|
|
201 |
|
202 |
-
with gr.TabItem("
|
203 |
-
|
204 |
-
label="
|
205 |
-
value="
|
206 |
)
|
207 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
update_btn.click(
|
209 |
-
fn=
|
210 |
-
inputs=[
|
211 |
-
outputs=[updated_transcript,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
)
|
213 |
|
214 |
-
#
|
215 |
if __name__ == "__main__":
|
216 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import re
|
3 |
import difflib
|
4 |
+
import os
|
5 |
from typing import List, Dict, Tuple, Optional
|
6 |
from dataclasses import dataclass
|
7 |
+
import numpy as np
|
8 |
|
9 |
@dataclass
|
10 |
class Segment:
|
11 |
+
"""A segment of a transcript with a speaker and text"""
|
12 |
speaker: str
|
13 |
timestamp: str
|
14 |
text: str
|
15 |
+
original_text: str # The text as it appears in the original transcript
|
16 |
+
index: int # Position in the original transcript
|
17 |
+
|
18 |
+
def clean_text_for_matching(text: str) -> str:
|
19 |
+
"""Clean text for matching purposes (remove formatting, punctuation, etc.)"""
|
20 |
+
# Remove markdown links and formatting
|
21 |
+
text = re.sub(r'\[([^\]]+)\]\([^)]+\)', r'\1', text) # Replace markdown links with just the text
|
22 |
+
text = re.sub(r'\*\*|\*', '', text) # Remove bold and italic formatting
|
23 |
+
|
24 |
+
# Remove common filler words and punctuation for better matching
|
25 |
+
text = re.sub(r'[,.;:!?]', ' ', text)
|
26 |
+
text = re.sub(r'\s+', ' ', text)
|
27 |
+
|
28 |
+
return text.lower().strip()
|
29 |
+
|
30 |
+
def load_transcript_file(file_path: str) -> str:
|
31 |
+
"""Load transcript from a file"""
|
32 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
33 |
+
return f.read()
|
34 |
|
35 |
def parse_transcript(transcript: str) -> List[Segment]:
|
36 |
+
"""
|
37 |
+
Parse transcript into segments.
|
38 |
+
Works with both formats:
|
39 |
+
- Speaker LastName 00:00:00
|
40 |
+
- **Speaker LastName** *00:00:00*
|
41 |
+
"""
|
42 |
+
# Match both markdown and plain formats
|
43 |
+
pattern = r"(?:\*\*)?(?:Speaker\s+)?([A-Za-z]+)(?:\*\*)?\s+(?:\*)?([0-9:]+)(?:\*)?\s*\n\n(.*?)(?=\n\n(?:\*\*)?(?:Speaker\s+)?[A-Za-z]+|\Z)"
|
44 |
|
45 |
+
segments = []
|
46 |
+
for i, match in enumerate(re.finditer(pattern, transcript, re.DOTALL)):
|
47 |
speaker, timestamp, text = match.groups()
|
48 |
+
original_text = text.strip()
|
49 |
+
cleaned_text = clean_text_for_matching(original_text)
|
50 |
+
segments.append(Segment(speaker, timestamp, cleaned_text, original_text, i))
|
51 |
|
52 |
return segments
|
53 |
|
54 |
+
def align_segments(auto_segments: List[Segment], human_segments: List[Segment]) -> Dict[int, int]:
|
55 |
+
"""
|
56 |
+
Align segments from human-edited transcript to auto-generated transcript.
|
57 |
+
Returns a dictionary mapping human segment indices to auto segment indices.
|
58 |
+
"""
|
59 |
+
alignments = {}
|
60 |
+
|
61 |
+
# Create text similarity matrix
|
62 |
+
similarity_matrix = np.zeros((len(human_segments), len(auto_segments)))
|
63 |
+
|
64 |
+
for h_idx, h_segment in enumerate(human_segments):
|
65 |
+
for a_idx, a_segment in enumerate(auto_segments):
|
66 |
+
similarity = difflib.SequenceMatcher(None, h_segment.text, a_segment.text).ratio()
|
67 |
+
similarity_matrix[h_idx, a_idx] = similarity
|
68 |
+
|
69 |
+
# Find best matches while maintaining order
|
70 |
+
remaining_auto_indices = set(range(len(auto_segments)))
|
71 |
+
|
72 |
+
for h_idx, h_segment in enumerate(human_segments):
|
73 |
+
# Find the best matching auto segment that hasn't been assigned yet
|
74 |
+
best_match = -1
|
75 |
+
best_similarity = 0.5 # Threshold for considering a match
|
76 |
|
77 |
+
for a_idx in remaining_auto_indices:
|
78 |
+
similarity = similarity_matrix[h_idx, a_idx]
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
if similarity > best_similarity:
|
81 |
+
# Check if this would violate sequence ordering
|
82 |
+
if all(aligned_a_idx < a_idx for aligned_h_idx, aligned_a_idx in alignments.items() if aligned_h_idx < h_idx):
|
83 |
+
best_match = a_idx
|
84 |
+
best_similarity = similarity
|
85 |
|
86 |
+
if best_match >= 0:
|
87 |
+
alignments[h_idx] = best_match
|
88 |
+
remaining_auto_indices.remove(best_match)
|
89 |
|
90 |
+
return alignments
|
91 |
|
92 |
+
def update_transcript(human_segments: List[Segment], auto_segments: List[Segment],
|
93 |
+
alignments: Dict[int, int], is_markdown: bool) -> str:
|
94 |
+
"""
|
95 |
+
Create updated transcript by transferring timestamps from auto segments to human segments.
|
96 |
+
Preserves all human edits, formatting, links, etc.
|
97 |
+
"""
|
98 |
+
updated_segments = []
|
99 |
+
|
100 |
+
for h_idx, h_segment in enumerate(human_segments):
|
101 |
+
if h_idx in alignments:
|
102 |
+
# Segment was matched, use timestamp from auto segment
|
103 |
+
a_idx = alignments[h_idx]
|
104 |
+
|
105 |
+
if is_markdown:
|
106 |
+
updated_segments.append(f"**{h_segment.speaker}** *{auto_segments[a_idx].timestamp}*\n\n{h_segment.original_text}")
|
107 |
+
else:
|
108 |
+
updated_segments.append(f"Speaker {h_segment.speaker} {auto_segments[a_idx].timestamp}\n\n{h_segment.original_text}")
|
|
|
|
|
|
|
|
|
|
|
109 |
else:
|
110 |
+
# No match found, keep original timestamp but mark it
|
111 |
+
if is_markdown:
|
112 |
+
updated_segments.append(f"**{h_segment.speaker}** *{h_segment.timestamp} [NO MATCH]*\n\n{h_segment.original_text}")
|
113 |
+
else:
|
114 |
+
updated_segments.append(f"Speaker {h_segment.speaker} {h_segment.timestamp} [NO MATCH]\n\n{h_segment.original_text}")
|
115 |
|
116 |
+
return "\n\n".join(updated_segments)
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
def generate_match_report(human_segments: List[Segment], auto_segments: List[Segment],
|
119 |
+
alignments: Dict[int, int]) -> str:
|
120 |
+
"""Generate a report about the matching process"""
|
121 |
+
total_human = len(human_segments)
|
122 |
+
total_auto = len(auto_segments)
|
123 |
+
total_matched = len(alignments)
|
124 |
+
|
125 |
+
report = f"### Matching Report\n\n"
|
126 |
+
report += f"- Human segments: {total_human}\n"
|
127 |
+
report += f"- Auto segments: {total_auto}\n"
|
128 |
+
report += f"- Matched segments: {total_matched} ({total_matched/total_human*100:.1f}%)\n"
|
129 |
+
|
130 |
+
if total_matched < total_human:
|
131 |
+
report += f"\n### Unmatched Segments ({total_human - total_matched})\n\n"
|
132 |
+
for h_idx, h_segment in enumerate(human_segments):
|
133 |
+
if h_idx not in alignments:
|
134 |
+
report += f"- Speaker {h_segment.speaker} at {h_segment.timestamp}: '{h_segment.text[:50]}...'\n"
|
135 |
+
|
136 |
+
# Calculate average similarity of matches
|
137 |
+
if alignments:
|
138 |
+
similarities = [
|
139 |
+
difflib.SequenceMatcher(None,
|
140 |
+
human_segments[h_idx].text,
|
141 |
+
auto_segments[a_idx].text).ratio()
|
142 |
+
for h_idx, a_idx in alignments.items()
|
143 |
+
]
|
144 |
+
avg_similarity = sum(similarities) / len(similarities)
|
145 |
+
report += f"\n### Match Quality\n\n"
|
146 |
+
report += f"- Average similarity: {avg_similarity:.2f}\n"
|
147 |
+
|
148 |
+
return report
|
149 |
|
150 |
+
def process_transcripts(auto_transcript, human_transcript):
|
151 |
+
"""Process the auto and human transcripts to update timestamps"""
|
152 |
+
try:
|
153 |
+
# Load transcripts
|
154 |
+
auto_content = auto_transcript.decode('utf-8') if isinstance(auto_transcript, bytes) else auto_transcript
|
155 |
+
human_content = human_transcript.decode('utf-8') if isinstance(human_transcript, bytes) else human_transcript
|
156 |
+
|
157 |
+
# Check if transcripts use markdown formatting
|
158 |
+
is_markdown = "**" in human_content
|
159 |
+
|
160 |
+
# Parse transcripts
|
161 |
+
auto_segments = parse_transcript(auto_content)
|
162 |
+
human_segments = parse_transcript(human_content)
|
163 |
+
|
164 |
+
if not auto_segments or not human_segments:
|
165 |
+
return "Error: Could not parse transcripts. Please check the format.", ""
|
166 |
+
|
167 |
+
# Align segments
|
168 |
+
alignments = align_segments(auto_segments, human_segments)
|
169 |
+
|
170 |
+
# Update transcript
|
171 |
+
updated_transcript = update_transcript(human_segments, auto_segments, alignments, is_markdown)
|
172 |
+
|
173 |
+
# Generate report
|
174 |
+
report = generate_match_report(human_segments, auto_segments, alignments)
|
175 |
+
|
176 |
+
return updated_transcript, report
|
177 |
|
178 |
+
except Exception as e:
|
179 |
+
return f"Error processing transcripts: {str(e)}", ""
|
180 |
|
181 |
+
def save_transcript(transcript: str) -> str:
|
182 |
+
"""Save transcript to a temporary file and return the path"""
|
183 |
+
output_dir = "output"
|
184 |
+
if not os.path.exists(output_dir):
|
185 |
+
os.makedirs(output_dir)
|
186 |
+
|
187 |
+
output_path = os.path.join(output_dir, "updated_transcript.md")
|
188 |
+
with open(output_path, 'w', encoding='utf-8') as f:
|
189 |
+
f.write(transcript)
|
190 |
+
|
191 |
+
return output_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
# Create Gradio interface
|
194 |
+
with gr.Blocks(title="Transcript Timestamp Synchronizer") as demo:
|
195 |
gr.Markdown("""
|
196 |
+
# 🎙️ Transcript Timestamp Synchronizer
|
197 |
|
198 |
+
This tool updates timestamps in human-edited transcripts based on new auto-generated transcripts.
|
199 |
|
200 |
## Instructions:
|
201 |
+
1. Upload or paste your new auto-generated transcript (with updated timestamps)
|
202 |
+
2. Upload or paste your human-edited transcript (with old timestamps)
|
203 |
+
3. Click "Synchronize Timestamps" to generate an updated transcript
|
204 |
|
205 |
+
The tool will match segments between the transcripts and update the timestamps while preserving all human edits.
|
206 |
""")
|
207 |
|
208 |
with gr.Row():
|
209 |
with gr.Column():
|
210 |
+
auto_source = gr.Radio(
|
211 |
+
["Upload File", "Paste Text"],
|
212 |
+
label="Auto-generated Transcript Source",
|
213 |
+
value="Paste Text"
|
214 |
+
)
|
215 |
+
auto_file = gr.File(
|
216 |
+
label="Upload Auto-generated Transcript",
|
217 |
+
file_types=[".md", ".txt"],
|
218 |
+
visible=False
|
219 |
+
)
|
220 |
+
auto_text = gr.TextArea(
|
221 |
+
label="Auto-generated Transcript (with new timestamps)",
|
222 |
placeholder="Paste the auto-generated transcript here...",
|
223 |
+
lines=15,
|
224 |
+
visible=True
|
225 |
)
|
226 |
|
227 |
with gr.Column():
|
228 |
+
human_source = gr.Radio(
|
229 |
+
["Upload File", "Paste Text"],
|
230 |
+
label="Human-edited Transcript Source",
|
231 |
+
value="Paste Text"
|
232 |
+
)
|
233 |
+
human_file = gr.File(
|
234 |
+
label="Upload Human-edited Transcript",
|
235 |
+
file_types=[".md", ".txt"],
|
236 |
+
visible=False
|
237 |
+
)
|
238 |
+
human_text = gr.TextArea(
|
239 |
+
label="Human-edited Transcript (with old timestamps)",
|
240 |
placeholder="Paste the human-edited transcript here...",
|
241 |
+
lines=15,
|
242 |
+
visible=True
|
243 |
)
|
244 |
|
245 |
+
update_btn = gr.Button("Synchronize Timestamps")
|
246 |
|
247 |
with gr.Tabs():
|
248 |
with gr.TabItem("Updated Transcript"):
|
|
|
251 |
placeholder="The updated transcript will appear here...",
|
252 |
lines=20
|
253 |
)
|
254 |
+
download_btn = gr.Button("Download Updated Transcript")
|
255 |
+
download_path = gr.File(label="Download", visible=False)
|
256 |
|
257 |
+
with gr.TabItem("Matching Report"):
|
258 |
+
matching_report = gr.Markdown(
|
259 |
+
label="Matching Report",
|
260 |
+
value="The matching report will appear here..."
|
261 |
)
|
262 |
|
263 |
+
# Handle visibility of upload/paste options
|
264 |
+
def update_auto_visibility(choice):
|
265 |
+
return gr.update(visible=choice=="Upload File"), gr.update(visible=choice=="Paste Text")
|
266 |
+
|
267 |
+
def update_human_visibility(choice):
|
268 |
+
return gr.update(visible=choice=="Upload File"), gr.update(visible=choice=="Paste Text")
|
269 |
+
|
270 |
+
auto_source.change(update_auto_visibility, auto_source, [auto_file, auto_text])
|
271 |
+
human_source.change(update_human_visibility, human_source, [human_file, human_text])
|
272 |
+
|
273 |
+
# Load file content if uploaded
|
274 |
+
def load_auto_file(file):
|
275 |
+
if file is None:
|
276 |
+
return ""
|
277 |
+
with open(file.name, "r", encoding="utf-8") as f:
|
278 |
+
return f.read()
|
279 |
+
|
280 |
+
def load_human_file(file):
|
281 |
+
if file is None:
|
282 |
+
return ""
|
283 |
+
with open(file.name, "r", encoding="utf-8") as f:
|
284 |
+
return f.read()
|
285 |
+
|
286 |
+
auto_file.change(load_auto_file, auto_file, auto_text)
|
287 |
+
human_file.change(load_human_file, human_file, human_text)
|
288 |
+
|
289 |
+
# Process transcripts
|
290 |
+
def handle_process(auto_content, human_content):
|
291 |
+
return process_transcripts(auto_content, human_content)
|
292 |
+
|
293 |
update_btn.click(
|
294 |
+
fn=handle_process,
|
295 |
+
inputs=[auto_text, human_text],
|
296 |
+
outputs=[updated_transcript, matching_report]
|
297 |
+
)
|
298 |
+
|
299 |
+
# Handle download
|
300 |
+
def prepare_download(transcript):
|
301 |
+
if not transcript:
|
302 |
+
return None
|
303 |
+
return save_transcript(transcript)
|
304 |
+
|
305 |
+
download_btn.click(
|
306 |
+
fn=prepare_download,
|
307 |
+
inputs=[updated_transcript],
|
308 |
+
outputs=[download_path]
|
309 |
)
|
310 |
|
311 |
+
# For local testing
|
312 |
if __name__ == "__main__":
|
313 |
demo.launch()
|