omniscience / app.py
dwb2023's picture
Update app.py
0201472 verified
raw
history blame
5.67 kB
import re
import PIL.Image
import gradio as gr
import jax
import jax.numpy as jnp
import numpy as np
import flax.linen as nn
from inference import PaliGemmaModel, VAEModel
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']
# Instantiate the models
pali_gemma_model = PaliGemmaModel()
vae_model = VAEModel('vae-oid.npz')
##### Parse segmentation output tokens into masks
##### Also returns bounding boxes with their labels
def parse_segmentation(input_image, input_text, max_new_tokens=100):
out = pali_gemma_model.infer(image=input_image, text=input_text, max_new_tokens=max_new_tokens)
objs = extract_objs(out.lstrip("\n"), input_image.size[0], input_image.size[1], unique_labels=True)
labels = set(obj.get('name') for obj in objs if obj.get('name'))
color_map = {l: COLORS[i % len(COLORS)] for i, l in enumerate(labels)}
highlighted_text = [(obj['content'], obj.get('name')) for obj in objs]
annotated_img = (
input_image,
[
(
obj['mask'] if obj.get('mask') is not None else obj['xyxy'],
obj['name'] or '',
)
for obj in objs
if 'mask' in obj or 'xyxy' in obj
],
)
has_annotations = bool(annotated_img[1])
return annotated_img
INTRO_TEXT="🔬🧠 CellVision AI -- Intelligent Cell Imaging Analysis 🤖🧫"
IMAGE_PROMPT="""
Describe the morphological characteristics and visible interactions between different cell types.
Assess the biological context to identify signs of cancer and the presence of antigens.
"""
with gr.Blocks(css="style.css") as demo:
gr.Markdown(INTRO_TEXT)
with gr.Tab("Segment/Detect"):
with gr.Row():
with gr.Column():
image = gr.Image(type="pil")
seg_input = gr.Text(label="Entities to Segment/Detect")
with gr.Column():
annotated_image = gr.AnnotatedImage(label="Output")
seg_btn = gr.Button("Submit")
examples = [
["./examples/cart1.jpg", "segment cells"],
["./examples/cart1.jpg", "detect cells"],
["./examples/cart2.jpg", "segment cells"],
["./examples/cart2.jpg", "detect cells"],
["./examples/cart3.jpg", "segment cells"],
["./examples/cart3.jpg", "detect cells"]
]
gr.Examples(
examples=examples,
inputs=[image, seg_input],
)
seg_inputs = [
image,
seg_input,
]
seg_outputs = [
annotated_image
]
seg_btn.click(
fn=parse_segmentation,
inputs=seg_inputs,
outputs=seg_outputs,
)
with gr.Tab("Text Generation"):
with gr.Column():
image = gr.Image(type="pil")
text_input = gr.Text(label="Input Text")
text_output = gr.Text(label="Text Output")
chat_btn = gr.Button()
tokens = gr.Slider(
label="Max New Tokens",
info="Set to larger for longer generation.",
minimum=10,
maximum=100,
value=50,
step=10,
)
chat_inputs = [
image,
text_input,
tokens
]
chat_outputs = [
text_output
]
chat_btn.click(
fn=pali_gemma_model.infer,
inputs=chat_inputs,
outputs=chat_outputs,
)
examples = [
["./examples/cart1.jpg", IMAGE_PROMPT],
["./examples/cart2.jpg", IMAGE_PROMPT],
["./examples/cart3.jpg", IMAGE_PROMPT]
]
gr.Examples(
examples=examples,
inputs=chat_inputs,
)
### Postprocessing Utils for Segmentation Tokens
### Segmentation tokens are passed to another VAE which decodes them to a mask
def extract_objs(text, width, height, unique_labels=False):
"""Returns objs for a string with "<loc>" and "<seg>" tokens."""
objs = []
seen = set()
while text:
m = _SEGMENT_DETECT_RE.match(text)
if not m:
break
print("m", m)
gs = list(m.groups())
before = gs.pop(0)
name = gs.pop()
y1, x1, y2, x2 = [int(x) / 1024 for x in gs[:4]]
y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width))
seg_indices = gs[4:20]
if seg_indices[0] is None:
mask = None
else:
seg_indices = np.array([int(x) for x in seg_indices], dtype=np.int32)
m64, = vae_model.reconstruct_masks(seg_indices[None])[..., 0]
m64 = np.clip(np.array(m64) * 0.5 + 0.5, 0, 1)
m64 = PIL.Image.fromarray((m64 * 255).astype('uint8'))
mask = np.zeros([height, width])
if y2 > y1 and x2 > x1:
mask[y1:y2, x1:x2] = np.array(m64.resize([x2 - x1, y2 - y1])) / 255.0
content = m.group()
if before:
objs.append(dict(content=before))
content = content[len(before):]
while unique_labels and name in seen:
name = (name or '') + "'"
seen.add(name)
objs.append(dict(
content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name))
text = text[len(before) + len(content):]
if text:
objs.append(dict(content=text))
return objs
_SEGMENT_DETECT_RE = re.compile(
r'(.*?)' +
r'<loc(\d{4})>' * 4 + r'\s*' +
'(?:%s)?' % (r'<seg(\d{3})>' * 16) +
r'\s*([^;<>]+)? ?(?:; )?',
)
if __name__ == "__main__":
demo.queue(max_size=10).launch(debug=True)