File size: 4,992 Bytes
9ba2a1c
a67942c
9ba2a1c
 
 
 
 
5fee1a1
9ba2a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
a67942c
5fee1a1
 
9ba2a1c
a67942c
5fee1a1
 
9ba2a1c
 
 
 
 
 
 
 
 
 
 
3eb8d72
9ba2a1c
 
 
 
3eb8d72
9ba2a1c
 
 
3eb8d72
9ba2a1c
 
 
 
 
3eb8d72
9ba2a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fee1a1
 
 
 
9ba2a1c
 
5fee1a1
9ba2a1c
5fee1a1
 
 
b6fdcd3
 
5fee1a1
 
 
 
 
 
b02e544
 
5fee1a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import torch
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
import time

MODEL_NAME = "openai/whisper-large-v3"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600  # limit to 1 hour YouTube files

device = 0 if torch.cuda.is_available() else "cpu"

pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
)

def transcribe(audio, task):
    if audio is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")

    text = pipe(audio, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
    return text

def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str

def download_yt_audio(yt_url, filename):
    info_loader = youtube_dl.YoutubeDL()
    
    try:
        info = info_loader.extract_info(yt_url, download=False)
    except youtube_dl.utils.DownloadError as err:
        raise gr.Error(str(err))
    
    file_length = info["duration_string"]
    file_h_m_s = file_length.split(":")
    file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
    
    if len(file_h_m_s) == 1:
        file_h_m_s.insert(0, 0)
    if len(file_h_m_s) == 2:
        file_h_m_s.insert(0, 0)
    file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
    
    if file_length_s > YT_LENGTH_LIMIT_S:
        yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
        file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
        raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
    
    ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
    
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        try:
            ydl.download([yt_url])
        except youtube_dl.utils.ExtractorError as err:
            raise gr.Error(str(err))

def yt_transcribe(yt_url, task, max_filesize=75.0):
    html_embed_str = _return_yt_html_embed(yt_url)

    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "video.mp4")
        download_yt_audio(yt_url, filepath)
        with open(filepath, "rb") as f:
            inputs = f.read()

    inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
    inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}

    text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]

    return html_embed_str, text

with gr.Blocks(theme="huggingface") as demo:
    gr.Markdown("# Whisper Large V3: Transcribe Audio")
    gr.Markdown(
        "Transcribe long-form audio inputs with the click of a button! Demo uses the OpenAI Whisper"
        f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
        " of arbitrary length."
    )

    with gr.Tabs():
        with gr.TabItem("Microphone"):
            with gr.Row():
                mic_input = gr.Audio(type="filepath", label="Microphone Input")
                # mic_input = gr.Audio(source="microphone", type="filepath", label="Microphone Input")
                mic_task = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
            mic_output = gr.Textbox(label="Transcription")
            mic_button = gr.Button("Transcribe")

        with gr.TabItem("Audio file"):
            with gr.Row():
                file_input = gr.Audio(type="filepath", label="Audio file")
                # file_input = gr.Audio(source="upload", type="filepath", label="Audio file")
                file_task = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
            file_output = gr.Textbox(label="Transcription")
            file_button = gr.Button("Transcribe")

        with gr.TabItem("YouTube"):
            with gr.Row():
                yt_input = gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
                yt_task = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
            yt_embed = gr.HTML(label="Video")
            yt_output = gr.Textbox(label="Transcription")
            yt_button = gr.Button("Transcribe")

    mic_button.click(transcribe, inputs=[mic_input, mic_task], outputs=mic_output)
    file_button.click(transcribe, inputs=[file_input, file_task], outputs=file_output)
    yt_button.click(yt_transcribe, inputs=[yt_input, yt_task], outputs=[yt_embed, yt_output])

if __name__ == "__main__":
    demo.launch(enable_queue=True)