File size: 5,797 Bytes
08396cc 61ff057 08396cc 61ff057 08396cc 61ff057 08396cc 61ff057 08396cc 61ff057 08396cc 61ff057 3c9d3d2 61ff057 08396cc 61ff057 08396cc 61ff057 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import streamlit as st
from qiskit import QuantumCircuit, transpile
from qiskit_aer import AerSimulator
import io
import sys
# Title for the Streamlit app
st.title("Quantum Circuit Simulator with Examples")
st.write("Select a quantum circuit example to load and simulate.")
# Define 20 quantum circuit examples (easy to complicated)
examples = {
"1. Empty Circuit": """
from qiskit import QuantumCircuit
qc = QuantumCircuit(1)
print("Empty circuit created.")
""",
"2. Single Qubit Hadamard": """
from qiskit import QuantumCircuit
from qiskit_aer import AerSimulator
qc = QuantumCircuit(1, 1)
qc.h(0)
qc.measure(0, 0)
simulator = AerSimulator()
compiled_circuit = transpile(qc, simulator)
result = simulator.run(compiled_circuit, shots=1024).result()
counts = result.get_counts()
print(counts)
""",
"3. Bell State": """
from qiskit import QuantumCircuit
from qiskit_aer import AerSimulator
qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
qc.measure([0, 1], [0, 1])
simulator = AerSimulator()
compiled_circuit = transpile(qc, simulator)
result = simulator.run(compiled_circuit, shots=1024).result()
counts = result.get_counts()
print(counts)
""",
"4. GHZ State": """
from qiskit import QuantumCircuit
from qiskit_aer import AerSimulator
qc = QuantumCircuit(3, 3)
qc.h(0)
qc.cx(0, 1)
qc.cx(1, 2)
qc.measure([0, 1, 2], [0, 1, 2])
simulator = AerSimulator()
compiled_circuit = transpile(qc, simulator)
result = simulator.run(compiled_circuit, shots=1024).result()
counts = result.get_counts()
print(counts)
""",
"5. Deutsch Algorithm": """
from qiskit import QuantumCircuit
from qiskit_aer import AerSimulator
qc = QuantumCircuit(2, 1)
qc.h([0, 1])
qc.cx(0, 1)
qc.h(0)
qc.measure(0, 0)
simulator = AerSimulator()
compiled_circuit = transpile(qc, simulator)
result = simulator.run(compiled_circuit, shots=1024).result()
counts = result.get_counts()
print(counts)
""",
"6. Quantum Teleportation": """
from qiskit import QuantumCircuit
from qiskit_aer import AerSimulator
qc = QuantumCircuit(3, 3)
qc.h(1)
qc.cx(1, 2)
qc.cx(0, 1)
qc.h(0)
qc.measure([0, 1], [0, 1])
qc.cx(1, 2)
qc.cz(0, 2)
qc.measure(2, 2)
simulator = AerSimulator()
compiled_circuit = transpile(qc, simulator)
result = simulator.run(compiled_circuit, shots=1024).result()
counts = result.get_counts()
print(counts)
""",
"7. DNA Base Pair Encoding": """
from qiskit import QuantumCircuit
qc = QuantumCircuit(2, 2)
# DNA Base Pair Encoding: A -> 00, T -> 01, G -> 10, C -> 11
qc.x(0) # Example encoding for T (01)
qc.measure([0, 1], [0, 1])
simulator = AerSimulator()
compiled_circuit = transpile(qc, simulator)
result = simulator.run(compiled_circuit, shots=1024).result()
counts = result.get_counts()
print(counts)
""",
"8. DNA Sequence Matching with Grover's Algorithm": """
from qiskit import QuantumCircuit, Aer
from qiskit_aer import AerSimulator
from qiskit.circuit.library import GroverOperator
from qiskit.algorithms import AmplificationProblem
# Oracle marks the target sequence
def oracle(circuit):
circuit.cz(0, 1) # Mark sequence 01 as a solution
qc = QuantumCircuit(2)
oracle(qc)
# Grover search for the sequence
problem = AmplificationProblem(qc)
grover_circuit = GroverOperator(problem)
simulator = AerSimulator()
compiled_circuit = transpile(grover_circuit, simulator)
result = simulator.run(compiled_circuit, shots=1024).result()
counts = result.get_counts()
print(counts)
""",
"9. Genetic Variant Interaction": """
from qiskit import QuantumCircuit, Aer
from qiskit_aer import AerSimulator
# Genetic variants as entangled qubits
qc = QuantumCircuit(2, 2)
qc.h(0) # Variant 1 in superposition
qc.cx(0, 1) # Entangle with Variant 2
qc.measure([0, 1], [0, 1])
simulator = AerSimulator()
compiled_circuit = transpile(qc, simulator)
result = simulator.run(compiled_circuit, shots=1024).result()
counts = result.get_counts()
print(counts)
""",
"10. DNA Alignment Scoring": """
from qiskit import QuantumCircuit, Aer
from qiskit_aer import AerSimulator
# Create a Quantum Circuit for DNA alignment
qc = QuantumCircuit(3, 3)
# Simulate possible alignments with superposition
qc.h([0, 1, 2]) # 3 alignments in parallel
qc.measure([0, 1, 2], [0, 1, 2])
simulator = AerSimulator()
compiled_circuit = transpile(qc, simulator)
result = simulator.run(compiled_circuit, shots=1024).result()
counts = result.get_counts()
print(counts)
""",
"11. Protein Folding Simulation with QAOA": """
from qiskit import Aer, QuantumCircuit
from qiskit.algorithms.optimizers import COBYLA
from qiskit_aer import AerSimulator
from qiskit.algorithms.minimum_eigensolvers import QAOA
from qiskit.circuit.library import TwoLocal
# Build a QAOA circuit for protein folding
p = 1
ansatz = TwoLocal(2, "ry", "cz", reps=p)
qaoa = QAOA(ansatz=ansatz, optimizer=COBYLA())
# Simulate energy minimization
simulator = AerSimulator()
qaoa_result = qaoa.compute_minimum_eigenvalue(operator=None)
print(qaoa_result)
"""
}
# Selection menu for examples
selected_example = st.selectbox("Select a Quantum Circuit Example", list(examples.keys()))
# Display selected example code
st.subheader("Selected Quantum Circuit Code")
st.text_area("Code", examples[selected_example], height=300)
# Run button
if st.button("Run"):
try:
# Redirect stdout to capture print output
old_stdout = sys.stdout
redirected_output = io.StringIO()
sys.stdout = redirected_output
# Execute the selected example
exec(examples[selected_example])
# Retrieve and display output
output = redirected_output.getvalue()
st.success("Execution successful!")
st.text_area("Output", output, height=200)
except Exception as e:
st.error(f"An error occurred: {e}")
finally:
# Reset stdout
sys.stdout = old_stdout
|