eaglelandsonce's picture
Update app.py
9568bdf verified
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import streamlit.components.v1 as components
# ===============================
# Streamlit Interface Setup
# ===============================
st.title("Spin Launch & Orbital Attachment Simulation (Animated)")
st.markdown(
"""
This simulation demonstrates a two‑phase launch:
1. **Spin‑Launch Phase:** A payload is accelerated from an elevated platform.
2. **Orbital Phase:** At a specified altitude, the payload “docks” with a human‑rated upper stage by
instantly setting its velocity to that of a circular orbit.
Adjust the parameters on the sidebar and click **Run Simulation**.
"""
)
# Sidebar parameters for simulation:
st.sidebar.header("Simulation Parameters")
# Time and integration parameters:
dt = st.sidebar.number_input("Time Step (s)", min_value=0.01, max_value=1.0, value=0.1, step=0.01)
t_max = st.sidebar.number_input("Total Simulation Time (s)", min_value=100, max_value=5000, value=1000, step=100)
# Launch conditions:
initial_altitude_km = st.sidebar.number_input("Initial Altitude (km)", min_value=1, max_value=100, value=50, step=1)
initial_velocity = st.sidebar.number_input("Initial Velocity (m/s)", min_value=100, max_value=5000, value=1200, step=100)
# Docking/Orbital attachment altitude:
docking_altitude_km = st.sidebar.number_input("Docking Altitude (km)", min_value=1, max_value=500, value=100, step=1)
# Button to run simulation:
run_sim = st.sidebar.button("Run Simulation")
if run_sim:
st.info("Running simulation... Please wait.")
# ===============================
# Physical Constants and Conversions
# ===============================
mu = 3.986e14 # Earth's gravitational parameter, m^3/s^2
R_E = 6.371e6 # Earth's radius, m
# Convert altitude values from km to m:
initial_altitude = initial_altitude_km * 1000.0 # initial altitude above Earth's surface (m)
docking_altitude = docking_altitude_km * 1000.0 # docking altitude above Earth's surface (m)
r_dock = R_E + docking_altitude # docking radius from Earth's center (m)
# ===============================
# Initial Conditions for the Simulation
# ===============================
# Starting at a point along the x-axis at a radial distance (Earth's radius + initial altitude)
initial_position = np.array([R_E + initial_altitude, 0.0])
# Initial velocity is chosen to be radial (pointing outward) at the chosen speed.
initial_velocity_vec = np.array([initial_velocity, 0.0])
# ===============================
# Define the Acceleration Function
# ===============================
def acceleration(pos):
"""Compute acceleration due to Earth's gravity at position pos (in m)."""
r = np.linalg.norm(pos)
return -mu * pos / r**3
# ===============================
# Run the Simulation Loop
# ===============================
# We'll record (time, x, y, phase)
# phase = 1: spin‑launch phase
# phase = 2: orbital phase (after docking)
states = []
phase = 1
t = 0.0
pos = initial_position.copy()
vel = initial_velocity_vec.copy()
docking_done = False
docking_event_time = None
docking_event_coords = None
while t < t_max:
# --- Check for the Docking Event ---
# When the payload's distance from Earth's center exceeds the docking radius
# and it's still moving outward, trigger the docking event.
if phase == 1 and not docking_done and np.linalg.norm(pos) >= r_dock and vel.dot(pos) > 0:
docking_done = True
phase = 2 # switch to orbital phase
r_current = np.linalg.norm(pos)
# Compute the circular orbital speed at the current radius:
v_circ = np.sqrt(mu / r_current)
# For a prograde orbit, choose a tangential (perpendicular) direction:
tangential_dir = np.array([-pos[1], pos[0]]) / r_current
vel = v_circ * tangential_dir # instantaneous burn to circular orbit
docking_event_time = t
docking_event_coords = pos.copy()
st.write(f"**Docking Event:** t = {t:.1f} s, Altitude = {(r_current - R_E)/1000:.1f} km, Circular Speed = {v_circ:.1f} m/s")
# Record the current state: (time, x, y, phase)
states.append((t, pos[0], pos[1], phase))
# --- Propagate the State (Euler Integration) ---
a = acceleration(pos)
pos = pos + vel * dt
vel = vel + a * dt
t += dt
# Convert the recorded states to a NumPy array for easier slicing.
states = np.array(states) # columns: time, x, y, phase
# ===============================
# Create the Animation Using Matplotlib
# ===============================
fig, ax = plt.subplots(figsize=(8, 8))
ax.set_aspect('equal')
ax.set_xlabel("x (km)")
ax.set_ylabel("y (km)")
ax.set_title("Trajectory: Spin Launch & Orbital Attachment")
# Draw Earth as a blue circle (Earth's radius in km)
earth = plt.Circle((0, 0), R_E / 1000, color='blue', alpha=0.3, label="Earth")
ax.add_artist(earth)
# Set plot limits to show the trajectory (e.g., up to Earth's radius + 300 km)
max_extent = (R_E + 300e3) / 1000 # in km
ax.set_xlim(-max_extent, max_extent)
ax.set_ylim(-max_extent, max_extent)
# Initialize the trajectory line and payload marker for animation:
trajectory_line, = ax.plot([], [], 'r-', lw=2, label="Trajectory")
payload_marker, = ax.plot([], [], 'ko', markersize=5, label="Payload")
time_text = ax.text(0.02, 0.95, '', transform=ax.transAxes, fontsize=10)
def init():
trajectory_line.set_data([], [])
payload_marker.set_data([], [])
time_text.set_text('')
return trajectory_line, payload_marker, time_text
def update(frame):
# Update the trajectory with all positions up to the current frame.
t_val = states[frame, 0]
x_vals = states[:frame+1, 1] / 1000 # convert m to km
y_vals = states[:frame+1, 2] / 1000 # convert m to km
trajectory_line.set_data(x_vals, y_vals)
# Wrap coordinates in a list so that they are interpreted as sequences:
payload_marker.set_data([states[frame, 1] / 1000], [states[frame, 2] / 1000])
time_text.set_text(f"Time: {t_val:.1f} s")
return trajectory_line, payload_marker, time_text
# Create the animation. Adjust the interval (ms) for playback speed.
anim = FuncAnimation(fig, update, frames=len(states), init_func=init, interval=20, blit=True)
# Convert the animation to an HTML5 video.
video_html = anim.to_html5_video()
if video_html:
st.markdown("### Simulation Animation")
# Option 1: Use streamlit components to embed the HTML video
components.html(video_html, height=500)
# Option 2: Alternatively, use st.markdown (uncomment the following line to try it)
# st.markdown(video_html, unsafe_allow_html=True)
else:
st.error("No video generated. Please ensure that ffmpeg is installed and properly configured.")
st.markdown(
"""
**Note:** This is a highly simplified simulation. In a real-world scenario, the spin‑launch, docking,
and orbital insertion phases would involve much more complex physics including aerodynamics, non‑instantaneous burns,
and detailed guidance and control.
"""
)