File size: 2,095 Bytes
9f3e74e
8a34309
 
9f3e74e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

# Title
st.title("Neural Network Line Fitting")

# Sidebar sliders for generating synthetic data
st.sidebar.header("Synthetic Data Controls")
true_w = st.sidebar.slider('True W (slope)', min_value=-10.0, max_value=10.0, value=2.0, step=0.1)
true_b = st.sidebar.slider('True B (intercept)', min_value=-10.0, max_value=10.0, value=1.0, step=0.1)
num_points = st.sidebar.slider('Number of data points', min_value=10, max_value=1000, value=100, step=10)

# Generate synthetic data
np.random.seed(0)
x_data = np.random.uniform(-100, 100, num_points)
noise = np.random.normal(0, 10, num_points)
y_data = true_w * x_data + true_b + noise

# Neural network model
model = Sequential([
    Dense(1, input_dim=1)
])

model.compile(optimizer='adam', loss='mean_squared_error')

# Train the model
model.fit(x_data, y_data, epochs=100, verbose=0)

# Get the trained parameters
trained_w = model.layers[0].get_weights()[0][0][0]
trained_b = model.layers[0].get_weights()[1][0]

# Make predictions
x_pred = np.linspace(-100, 100, 200)
y_pred = model.predict(x_pred)

# Plot the results
fig, ax = plt.subplots(figsize=(10, 5))

# Plot for the x-axis (bottom line)
ax.hlines(-1, -100, 100, color='blue', linestyle='--')  # X-axis

# Plot for the y-axis (top line)
ax.hlines(1, -100, 100, color='blue', linestyle='--')  # Y-axis

# Plot the synthetic data points
ax.scatter(x_data, y_data, color='gray', alpha=0.5, label='Data points')

# Plot the prediction line
ax.plot(x_pred, y_pred, color='red', label=f'Fitted line: y = {trained_w:.2f}x + {trained_b:.2f}')

# Update the layout
ax.set_xlim(-100, 100)
ax.set_ylim(-2, 2)
ax.set_xlabel('X-axis and Y-axis')
ax.set_yticks([])  # Hide y-axis ticks
ax.set_title('Neural Network Line Fitting')
ax.legend()
ax.grid(True)

# Display the plot in Streamlit
st.pyplot(fig)

# Display the trained parameters
st.write(f'Trained parameters: w = {trained_w:.2f}, b = {trained_b:.2f}')