Spaces:
Sleeping
Sleeping
eaglelandsonce
commited on
Commit
•
6d89f79
1
Parent(s):
f2036f2
Update pages/13_TransferLearning.py
Browse files- pages/13_TransferLearning.py +16 -38
pages/13_TransferLearning.py
CHANGED
@@ -1,13 +1,21 @@
|
|
1 |
import streamlit as st
|
2 |
import tensorflow as tf
|
3 |
from tensorflow.keras import layers, models, applications
|
4 |
-
|
5 |
import matplotlib.pyplot as plt
|
6 |
-
import numpy as np
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Streamlit app
|
13 |
st.title("Transfer Learning with VGG16 for Image Classification")
|
@@ -16,34 +24,6 @@ st.title("Transfer Learning with VGG16 for Image Classification")
|
|
16 |
batch_size = st.slider("Batch Size", 16, 128, 32, 16)
|
17 |
epochs = st.slider("Epochs", 5, 50, 10, 5)
|
18 |
|
19 |
-
# Data augmentation and preprocessing
|
20 |
-
train_datagen = ImageDataGenerator(
|
21 |
-
rescale=1./255,
|
22 |
-
rotation_range=40,
|
23 |
-
width_shift_range=0.2,
|
24 |
-
height_shift_range=0.2,
|
25 |
-
shear_range=0.2,
|
26 |
-
zoom_range=0.2,
|
27 |
-
horizontal_flip=True,
|
28 |
-
fill_mode='nearest'
|
29 |
-
)
|
30 |
-
|
31 |
-
validation_datagen = ImageDataGenerator(rescale=1./255)
|
32 |
-
|
33 |
-
train_generator = train_datagen.flow_from_directory(
|
34 |
-
train_dir,
|
35 |
-
target_size=(150, 150),
|
36 |
-
batch_size=batch_size,
|
37 |
-
class_mode='binary'
|
38 |
-
)
|
39 |
-
|
40 |
-
validation_generator = validation_datagen.flow_from_directory(
|
41 |
-
validation_dir,
|
42 |
-
target_size=(150, 150),
|
43 |
-
batch_size=batch_size,
|
44 |
-
class_mode='binary'
|
45 |
-
)
|
46 |
-
|
47 |
# Load the pre-trained VGG16 model
|
48 |
base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(150, 150, 3))
|
49 |
|
@@ -70,11 +50,9 @@ model.compile(optimizer='adam',
|
|
70 |
if st.button("Train Model"):
|
71 |
with st.spinner("Training the model..."):
|
72 |
history = model.fit(
|
73 |
-
|
74 |
-
steps_per_epoch=train_generator.samples // train_generator.batch_size,
|
75 |
epochs=epochs,
|
76 |
-
validation_data=
|
77 |
-
validation_steps=validation_generator.samples // validation_generator.batch_size
|
78 |
)
|
79 |
|
80 |
st.success("Model training completed!")
|
@@ -100,5 +78,5 @@ if st.button("Train Model"):
|
|
100 |
|
101 |
# Evaluate the model
|
102 |
if st.button("Evaluate Model"):
|
103 |
-
test_loss, test_acc = model.evaluate(
|
104 |
st.write(f"Validation accuracy: {test_acc}")
|
|
|
1 |
import streamlit as st
|
2 |
import tensorflow as tf
|
3 |
from tensorflow.keras import layers, models, applications
|
4 |
+
import tensorflow_datasets as tfds
|
5 |
import matplotlib.pyplot as plt
|
|
|
6 |
|
7 |
+
# Load the dataset
|
8 |
+
dataset_name = "cats_vs_dogs"
|
9 |
+
(ds_train, ds_val), ds_info = tfds.load(dataset_name, split=['train[:80%]', 'train[80%:]'], with_info=True, as_supervised=True)
|
10 |
+
|
11 |
+
# Preprocess the dataset
|
12 |
+
def preprocess_image(image, label):
|
13 |
+
image = tf.image.resize(image, (150, 150))
|
14 |
+
image = image / 255.0
|
15 |
+
return image, label
|
16 |
+
|
17 |
+
ds_train = ds_train.map(preprocess_image).batch(32).prefetch(tf.data.AUTOTUNE)
|
18 |
+
ds_val = ds_val.map(preprocess_image).batch(32).prefetch(tf.data.AUTOTUNE)
|
19 |
|
20 |
# Streamlit app
|
21 |
st.title("Transfer Learning with VGG16 for Image Classification")
|
|
|
24 |
batch_size = st.slider("Batch Size", 16, 128, 32, 16)
|
25 |
epochs = st.slider("Epochs", 5, 50, 10, 5)
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
# Load the pre-trained VGG16 model
|
28 |
base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(150, 150, 3))
|
29 |
|
|
|
50 |
if st.button("Train Model"):
|
51 |
with st.spinner("Training the model..."):
|
52 |
history = model.fit(
|
53 |
+
ds_train,
|
|
|
54 |
epochs=epochs,
|
55 |
+
validation_data=ds_val
|
|
|
56 |
)
|
57 |
|
58 |
st.success("Model training completed!")
|
|
|
78 |
|
79 |
# Evaluate the model
|
80 |
if st.button("Evaluate Model"):
|
81 |
+
test_loss, test_acc = model.evaluate(ds_val, verbose=2)
|
82 |
st.write(f"Validation accuracy: {test_acc}")
|