Spaces:
Running
Running
File size: 7,649 Bytes
b4e298c 284b3b6 b4e298c 284b3b6 b4e298c 284b3b6 b4e298c 284b3b6 b4e298c 284b3b6 b4e298c 284b3b6 b4e298c 284b3b6 b4e298c 284b3b6 b4e298c 284b3b6 b4e298c 284b3b6 b4e298c 284b3b6 b4e298c 284b3b6 b4e298c 284b3b6 b4e298c 284b3b6 b4e298c 284b3b6 b4e298c 284b3b6 b4e298c 284b3b6 b4e298c 284b3b6 b4e298c 284b3b6 b4e298c 284b3b6 b4e298c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import streamlit as st
import torch
import torch.nn as nn
import torch.optim as optim
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
from torchtext.datasets import AG_NEWS
from torch.utils.data import DataLoader, random_split
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
# Define the RNN model
class RNN(nn.Module):
def __init__(self, vocab_size, embed_size, hidden_size, output_size, n_layers, dropout):
super(RNN, self).__init__()
self.embedding = nn.Embedding(vocab_size, embed_size)
self.rnn = nn.RNN(embed_size, hidden_size, n_layers, dropout=dropout, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.dropout(self.embedding(x))
h0 = torch.zeros(n_layers, x.size(0), hidden_size).to(device)
out, _ = self.rnn(x, h0)
out = self.fc(out[:, -1, :])
return out
# Create a custom collate function to pad sequences
def collate_batch(batch):
label_list, text_list, lengths = [], [], []
for _label, _text in batch:
label_list.append(label_pipeline(_label))
processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)
text_list.append(processed_text)
lengths.append(processed_text.size(0))
labels = torch.tensor(label_list, dtype=torch.int64)
texts = pad_sequence(text_list, batch_first=True, padding_value=vocab["<pad>"])
return texts, labels
# Function to load the data
@st.cache_data
def load_data():
tokenizer = get_tokenizer("basic_english")
train_iter = AG_NEWS(split='train')
test_iter = AG_NEWS(split='test')
def yield_tokens(data_iter):
for _, text in data_iter:
yield tokenizer(text)
vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>", "<pad>"])
vocab.set_default_index(vocab["<unk>"])
global text_pipeline, label_pipeline
text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: int(x) - 1
# Create DataLoaders
train_dataset = list(train_iter)
test_dataset = list(test_iter)
train_size = int(0.8 * len(train_dataset))
valid_size = len(train_dataset) - train_size
train_dataset, valid_dataset = random_split(train_dataset, [train_size, valid_size])
BATCH_SIZE = 64
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_batch)
valid_loader = DataLoader(valid_dataset, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_batch)
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_batch)
return vocab, train_loader, valid_loader, test_loader
# Function to train the network
def train_network(net, iterator, optimizer, criterion, epochs):
loss_values = []
for epoch in range(epochs):
epoch_loss = 0
net.train()
for texts, labels in iterator:
texts, labels = texts.to(device), labels.to(device)
optimizer.zero_grad()
predictions = net(texts).squeeze(1)
loss = criterion(predictions, labels)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_loss /= len(iterator)
loss_values.append(epoch_loss)
st.write(f'Epoch {epoch + 1}: loss {epoch_loss:.3f}')
st.write('Finished Training')
return loss_values
# Function to evaluate the network
def evaluate_network(net, iterator, criterion):
epoch_loss = 0
correct = 0
total = 0
all_labels = []
all_predictions = []
net.eval()
with torch.no_grad():
for texts, labels in iterator:
texts, labels = texts.to(device), labels.to(device)
predictions = net(texts).squeeze(1)
loss = criterion(predictions, labels)
epoch_loss += loss.item()
_, predicted = torch.max(predictions, 1)
correct += (predicted == labels).sum().item()
total += len(labels)
all_labels.extend(labels.cpu().numpy())
all_predictions.extend(predicted.cpu().numpy())
accuracy = 100 * correct / total
st.write(f'Loss: {epoch_loss / len(iterator):.4f}, Accuracy: {accuracy:.2f}%')
return accuracy, all_labels, all_predictions
# Load data
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
vocab, train_loader, valid_loader, test_loader = load_data()
# Streamlit interface
st.title("RNN for Text Classification on AG News Dataset")
st.write("""
This application demonstrates how to build and train a Recurrent Neural Network (RNN) for text classification using the AG News dataset. You can adjust hyperparameters, visualize sample data, and see the model's performance.
""")
# Sidebar for input parameters
st.sidebar.header('Model Hyperparameters')
embed_size = st.sidebar.slider('Embedding Size', 50, 300, 100)
hidden_size = st.sidebar.slider('Hidden Size', 50, 300, 256)
n_layers = st.sidebar.slider('Number of RNN Layers', 1, 3, 2)
dropout = st.sidebar.slider('Dropout', 0.0, 0.5, 0.2, step=0.1)
learning_rate = st.sidebar.slider('Learning Rate', 0.001, 0.1, 0.01, step=0.001)
epochs = st.sidebar.slider('Epochs', 1, 20, 5)
# Create the network
vocab_size = len(vocab)
output_size = 4 # Number of classes in AG_NEWS
net = RNN(vocab_size, embed_size, hidden_size, output_size, n_layers, dropout).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=learning_rate)
# Add vertical space
st.write('\n' * 10)
# Train the network
if st.sidebar.button('Train Network'):
loss_values = train_network(net, train_loader, optimizer, criterion, epochs)
# Plot the loss values
plt.figure(figsize=(10, 5))
plt.plot(range(1, epochs + 1), loss_values, marker='o')
plt.title('Training Loss Over Epochs')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.grid(True)
st.pyplot(plt)
# Store the trained model in the session state
st.session_state['trained_model'] = net
# Test the network
if 'trained_model' in st.session_state and st.sidebar.button('Test Network'):
accuracy, all_labels, all_predictions = evaluate_network(st.session_state['trained_model'], test_loader, criterion)
st.write(f'Test Accuracy: {accuracy:.2f}%')
# Display results in a table
st.write('Ground Truth vs Predicted')
results = pd.DataFrame({
'Ground Truth': [LABEL.vocab.itos[label] for label in all_labels],
'Predicted': [LABEL.vocab.itos[label] for label in all_predictions]
})
st.table(results.head(50)) # Display first 50 results for brevity
# Visualize some test results
def visualize_text_predictions(iterator, net):
net.eval()
samples = []
with torch.no_grad():
for texts, labels in iterator:
predictions = torch.max(net(texts), 1)[1]
samples.extend(zip(texts.cpu(), labels.cpu(), predictions.cpu()))
if len(samples) >= 10:
break
return samples[:10]
if 'trained_model' in st.session_state and st.sidebar.button('Show Test Results'):
samples = visualize_text_predictions(test_loader, st.session_state['trained_model'])
st.write('Ground Truth vs Predicted for Sample Texts')
for i, (text, true_label, predicted) in enumerate(samples):
st.write(f'Sample {i+1}')
st.text(' '.join([vocab.get_itos()[token] for token in text]))
st.write(f'Ground Truth: {LABEL.vocab.itos[true_label.item()]}, Predicted: {LABEL.vocab.itos[predicted.item()]}')
|