pytorch / pages /11_FFNN.py
eaglelandsonce's picture
Create 11_FFNN.py
54db127 verified
raw
history blame
4.17 kB
import streamlit as st
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
# Define the Feedforward Neural Network
class FeedforwardNeuralNetwork(nn.Module):
def __init__(self, input_size, hidden1_size, hidden2_size, hidden3_size, output_size):
super(FeedforwardNeuralNetwork, self).__init__()
self.fc1 = nn.Linear(input_size, hidden1_size)
self.fc2 = nn.Linear(hidden1_size, hidden2_size)
self.fc3 = nn.Linear(hidden2_size, hidden3_size)
self.fc4 = nn.Linear(hidden3_size, output_size)
self.relu = nn.ReLU()
def forward(self, x):
x = x.view(-1, 28 * 28)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.relu(self.fc3(x))
x = self.fc4(x)
return x
# Function to load the data
@st.cache
def load_data():
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)
return trainloader, testloader
# Function to train the network
def train_network(net, trainloader, criterion, optimizer, epochs):
for epoch in range(epochs):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
st.write(f'Epoch {epoch + 1}: loss {running_loss / len(trainloader):.3f}')
st.write('Finished Training')
# Function to test the network
def test_network(net, testloader):
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
st.write(f'Accuracy of the network on the 10000 test images: {100 * correct / total:.2f}%')
# Load the data
trainloader, testloader = load_data()
# Streamlit sidebar for input parameters
st.sidebar.header('Model Hyperparameters')
input_size = st.sidebar.slider('Input Size', 784, 784, 784)
hidden1_size = st.sidebar.slider('Hidden Layer 1 Size', 128, 1024, 512)
hidden2_size = st.sidebar.slider('Hidden Layer 2 Size', 128, 1024, 256)
hidden3_size = st.sidebar.slider('Hidden Layer 3 Size', 128, 1024, 128)
output_size = st.sidebar.slider('Output Size', 10, 10, 10)
learning_rate = st.sidebar.slider('Learning Rate', 0.001, 0.1, 0.01, step=0.001)
momentum = st.sidebar.slider('Momentum', 0.0, 1.0, 0.9, step=0.1)
epochs = st.sidebar.slider('Epochs', 1, 20, 5)
# Create the network
net = FeedforwardNeuralNetwork(input_size, hidden1_size, hidden2_size, hidden3_size, output_size)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=momentum)
# Train the network
if st.sidebar.button('Train Network'):
train_network(net, trainloader, criterion, optimizer, epochs)
# Test the network
if st.sidebar.button('Test Network'):
test_network(net, testloader)
# Visualize some test results
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
if st.sidebar.button('Show Test Results'):
dataiter = iter(testloader)
images, labels = dataiter.next()
imshow(torchvision.utils.make_grid(images))
st.write('GroundTruth: ', ' '.join(f'{labels[j]}' for j in range(8)))
outputs = net(images)
_, predicted = torch.max(outputs, 1)
st.write('Predicted: ', ' '.join(f'{predicted[j]}' for j in range(8)))