Spaces:
Running
Running
Create 21_NLP_Transformer.py
Browse files- pages/21_NLP_Transformer.py +89 -0
pages/21_NLP_Transformer.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils.data import DataLoader
|
3 |
+
from transformers import BertTokenizer, BertForSequenceClassification, AdamW, get_scheduler
|
4 |
+
from datasets import load_dataset
|
5 |
+
from tqdm.auto import tqdm
|
6 |
+
import streamlit as st
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
|
9 |
+
# Load and preprocess the dataset
|
10 |
+
dataset = load_dataset("imdb")
|
11 |
+
train_dataset = dataset["train"]
|
12 |
+
test_dataset = dataset["test"]
|
13 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
14 |
+
|
15 |
+
def preprocess_function(examples):
|
16 |
+
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
|
17 |
+
|
18 |
+
encoded_train_dataset = train_dataset.map(preprocess_function, batched=True)
|
19 |
+
encoded_test_dataset = test_dataset.map(preprocess_function, batched=True)
|
20 |
+
train_dataloader = DataLoader(encoded_train_dataset, shuffle=True, batch_size=8)
|
21 |
+
test_dataloader = DataLoader(encoded_test_dataset, batch_size=8)
|
22 |
+
|
23 |
+
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
|
24 |
+
optimizer = AdamW(model.parameters(), lr=5e-5)
|
25 |
+
num_epochs = 3
|
26 |
+
num_training_steps = num_epochs * len(train_dataloader)
|
27 |
+
lr_scheduler = get_scheduler(name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps)
|
28 |
+
|
29 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
30 |
+
model.to(device)
|
31 |
+
|
32 |
+
# Training Loop with loss tracking
|
33 |
+
loss_values = []
|
34 |
+
|
35 |
+
model.train()
|
36 |
+
for epoch in range(num_epochs):
|
37 |
+
for batch in train_dataloader:
|
38 |
+
batch = {k: v.to(device) for k, v in batch.items()}
|
39 |
+
outputs = model(**batch)
|
40 |
+
loss = outputs.loss
|
41 |
+
loss.backward()
|
42 |
+
|
43 |
+
optimizer.step()
|
44 |
+
lr_scheduler.step()
|
45 |
+
optimizer.zero_grad()
|
46 |
+
loss_values.append(loss.item())
|
47 |
+
|
48 |
+
# Define evaluation function
|
49 |
+
def evaluate(model, dataloader):
|
50 |
+
model.eval()
|
51 |
+
correct = 0
|
52 |
+
total = 0
|
53 |
+
with torch.no_grad():
|
54 |
+
for batch in dataloader:
|
55 |
+
batch = {k: v.to(device) for k, v in batch.items()}
|
56 |
+
outputs = model(**batch)
|
57 |
+
predictions = outputs.logits.argmax(dim=-1)
|
58 |
+
correct += (predictions == batch["labels"]).sum().item()
|
59 |
+
total += batch["labels"].size(0)
|
60 |
+
return correct / total
|
61 |
+
|
62 |
+
# Evaluate the model on the test set
|
63 |
+
accuracy = evaluate(model, test_dataloader)
|
64 |
+
|
65 |
+
# Streamlit Interface
|
66 |
+
st.title("Sentiment Analysis with BERT")
|
67 |
+
st.write(f"Test Accuracy: {accuracy * 100:.2f}%")
|
68 |
+
|
69 |
+
# Plot loss values
|
70 |
+
st.write("### Training Loss")
|
71 |
+
plt.figure(figsize=(10, 6))
|
72 |
+
plt.plot(loss_values, label="Training Loss")
|
73 |
+
plt.xlabel("Training Steps")
|
74 |
+
plt.ylabel("Loss")
|
75 |
+
plt.legend()
|
76 |
+
st.pyplot(plt)
|
77 |
+
|
78 |
+
# Text input for prediction
|
79 |
+
st.write("### Predict Sentiment")
|
80 |
+
user_input = st.text_area("Enter text:", "I loved this movie!")
|
81 |
+
if user_input:
|
82 |
+
inputs = tokenizer(user_input, padding="max_length", truncation=True, max_length=512, return_tensors="pt")
|
83 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
84 |
+
model.eval()
|
85 |
+
with torch.no_grad():
|
86 |
+
outputs = model(**inputs)
|
87 |
+
prediction = outputs.logits.argmax(dim=-1).item()
|
88 |
+
sentiment = "Positive" if prediction == 1 else "Negative"
|
89 |
+
st.write(f"Sentiment: **{sentiment}**")
|