Spaces:
Sleeping
Sleeping
import os | |
import logging | |
from huggingface_hub import InferenceClient | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import gradio as gr | |
log_level = os.environ.get("LOG_LEVEL", "WARNING") | |
logging.basicConfig(encoding='utf-8', level=log_level) | |
logging.info("Creating Inference Client") | |
client = InferenceClient( | |
"cognitivecomputations/dolphin-2.6-mistral-7b" | |
) | |
def format_prompt(message, history): | |
"""Formats the prompt for the AI""" | |
logging.info("Formatting Prompt") | |
logging.debug("Input Message: %s", message) | |
logging.debug("Input History: %s", history) | |
prompt = "<|im_start|>system\n" +\ | |
"You are Dolphin, a helpful AI assistant.<|im_end|>" | |
prompt += "<|im_start|>user\n" + f"{message}<|im_end|>" | |
prompt += "<|im_start|>assistant" | |
return prompt | |
def generate( | |
prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, | |
): | |
logging.info("Generating Response") | |
logging.debug("Input Prompt: %s", prompt) | |
logging.debug("Input History: %s", history) | |
logging.debug("Input System Prompt: %s", system_prompt) | |
logging.debug("Input Temperature: %s", temperature) | |
logging.debug("Input Max New Tokens: %s", max_new_tokens) | |
logging.debug("Input Top P: %s", top_p) | |
logging.debug("Input Repetition Penalty: %s", repetition_penalty) | |
logging.info("Converting Parameters to Correct Type") | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
logging.debug("Temperature: %s", temperature) | |
logging.debug("Top P: %s", top_p) | |
logging.info("Creating Generate kwargs") | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
logging.debug("Generate Args: %s", generate_kwargs) | |
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) | |
logging.debug("Prompt: %s", formatted_prompt) | |
logging.info("Generating Text") | |
stream = client.text_generation( | |
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
logging.info("Creating Output") | |
output = "" | |
for response in stream: | |
output += response.token.text | |
yield output | |
logging.debug("Output: %s", output) | |
return output | |
additional_inputs = [ | |
gr.Textbox( | |
label="System Prompt", | |
max_lines=1, | |
interactive=True, | |
), | |
gr.Slider( | |
label="Temperature", | |
value=0.9, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=256, | |
minimum=0, | |
maximum=1048, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
] | |
examples = [] | |
logging.info("Creating Chat Interface") | |
gr.ChatInterface( | |
fn=generate, | |
chatbot=gr.Chatbot(show_label=False, show_share_button=False, | |
show_copy_button=True, likeable=True, layout="panel"), | |
additional_inputs=additional_inputs, | |
title="Dolphin Mistral", | |
examples=examples, | |
concurrency_limit=20, | |
).launch(show_api=False) |