Spaces:
Sleeping
Sleeping
File size: 5,130 Bytes
666f8bf 8bf4029 a8f57f8 e450df1 e0bb6b6 8bf4029 a8f57f8 8bf4029 a8f57f8 684e9f3 8bf4029 a8f57f8 8bf4029 a8f57f8 e0bb6b6 8bf4029 f611d13 d48e497 f611d13 e450df1 f611d13 e450df1 f611d13 e0bb6b6 e5cbbd6 8bf4029 a8f57f8 8bf4029 f611d13 8bf4029 a8f57f8 8bf4029 a8f57f8 8bf4029 a8f57f8 8bf4029 e450df1 a8f57f8 8bf4029 a8f57f8 8bf4029 a8f57f8 8bf4029 a8f57f8 8bf4029 f611d13 a8f57f8 f611d13 e450df1 a8f57f8 8bf4029 e450df1 f611d13 8bf4029 e450df1 f611d13 e450df1 8bf4029 55bf26f e0bb6b6 f611d13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
import io
import base64
from PIL import Image
import logging
from fastapi import FastAPI
from pydantic import BaseModel
# Configurar logging para depuração
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Inicializar FastAPI
app = FastAPI()
# Modelo para validação dos parâmetros da API
class ImageRequest(BaseModel):
prompt: str
seed: int = 42
randomize_seed: bool = False
width: int = 1024
height: int = 1024
num_inference_steps: int = 4
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
logger.info(f"Chamando infer com prompt={prompt}, seed={seed}, randomize_seed={randomize_seed}, width={width}, height={height}, num_inference_steps={num_inference_steps}")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# Gerar a imagem
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0
).images[0]
# Converter a imagem para Base64
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return {"image_base64": f"data:image/png;base64,{img_str}", "seed": seed}
# Endpoint FastAPI
@app.post("/api/infer")
async def api_infer(request: ImageRequest):
logger.info(f"Requisição API recebida: {request}")
result = infer(
prompt=request.prompt,
seed=request.seed,
randomize_seed=request.randomize_seed,
width=request.width,
height=request.height,
num_inference_steps=request.num_inference_steps
)
return result
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [schnell]
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
seed_output = gr.Number(label="Seed", show_label=True)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed_output],
cache_examples=True,
cache_mode="lazy"
)
# Função para formatar a saída para a interface
def format_output(prompt, seed, randomize_seed, width, height, num_inference_steps):
output = infer(prompt, seed, randomize_seed, width, height, num_inference_steps)
return output["image_base64"], output["seed"]
gr.on(
triggers=[run_button.click, prompt.submit],
fn=format_output,
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
outputs=[result, seed_output]
)
# Iniciar o Gradio (sem queue, pois usamos FastAPI para a API)
demo.launch() |