Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline | |
import io | |
import base64 | |
from PIL import Image | |
import logging | |
from fastapi import FastAPI | |
from pydantic import BaseModel | |
# Configurar logging para depuração | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Inicializar FastAPI | |
app = FastAPI() | |
# Modelo para validação dos parâmetros da API | |
class ImageRequest(BaseModel): | |
prompt: str | |
seed: int = 42 | |
randomize_seed: bool = False | |
width: int = 1024 | |
height: int = 1024 | |
num_inference_steps: int = 4 | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): | |
logger.info(f"Chamando infer com prompt={prompt}, seed={seed}, randomize_seed={randomize_seed}, width={width}, height={height}, num_inference_steps={num_inference_steps}") | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
# Gerar a imagem | |
image = pipe( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=0.0 | |
).images[0] | |
# Converter a imagem para Base64 | |
buffered = io.BytesIO() | |
image.save(buffered, format="PNG") | |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") | |
return {"image_base64": f"data:image/png;base64,{img_str}", "seed": seed} | |
# Endpoint FastAPI | |
async def api_infer(request: ImageRequest): | |
logger.info(f"Requisição API recebida: {request}") | |
result = infer( | |
prompt=request.prompt, | |
seed=request.seed, | |
randomize_seed=request.randomize_seed, | |
width=request.width, | |
height=request.height, | |
num_inference_steps=request.num_inference_steps | |
) | |
return result | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cat holding a sign that says hello world", | |
"an anime illustration of a wiener schnitzel", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# FLUX.1 [schnell] | |
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation | |
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)] | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
seed_output = gr.Number(label="Seed", show_label=True) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=4, | |
) | |
gr.Examples( | |
examples=examples, | |
fn=infer, | |
inputs=[prompt], | |
outputs=[result, seed_output], | |
cache_examples=True, | |
cache_mode="lazy" | |
) | |
# Função para formatar a saída para a interface | |
def format_output(prompt, seed, randomize_seed, width, height, num_inference_steps): | |
output = infer(prompt, seed, randomize_seed, width, height, num_inference_steps) | |
return output["image_base64"], output["seed"] | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=format_output, | |
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps], | |
outputs=[result, seed_output] | |
) | |
# Iniciar o Gradio (sem queue, pois usamos FastAPI para a API) | |
demo.launch() |