eder0782's picture
Update app.py
e0bb6b6 verified
raw
history blame
5.13 kB
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
import io
import base64
from PIL import Image
import logging
from fastapi import FastAPI
from pydantic import BaseModel
# Configurar logging para depuração
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Inicializar FastAPI
app = FastAPI()
# Modelo para validação dos parâmetros da API
class ImageRequest(BaseModel):
prompt: str
seed: int = 42
randomize_seed: bool = False
width: int = 1024
height: int = 1024
num_inference_steps: int = 4
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
logger.info(f"Chamando infer com prompt={prompt}, seed={seed}, randomize_seed={randomize_seed}, width={width}, height={height}, num_inference_steps={num_inference_steps}")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# Gerar a imagem
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0
).images[0]
# Converter a imagem para Base64
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return {"image_base64": f"data:image/png;base64,{img_str}", "seed": seed}
# Endpoint FastAPI
@app.post("/api/infer")
async def api_infer(request: ImageRequest):
logger.info(f"Requisição API recebida: {request}")
result = infer(
prompt=request.prompt,
seed=request.seed,
randomize_seed=request.randomize_seed,
width=request.width,
height=request.height,
num_inference_steps=request.num_inference_steps
)
return result
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [schnell]
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
seed_output = gr.Number(label="Seed", show_label=True)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed_output],
cache_examples=True,
cache_mode="lazy"
)
# Função para formatar a saída para a interface
def format_output(prompt, seed, randomize_seed, width, height, num_inference_steps):
output = infer(prompt, seed, randomize_seed, width, height, num_inference_steps)
return output["image_base64"], output["seed"]
gr.on(
triggers=[run_button.click, prompt.submit],
fn=format_output,
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
outputs=[result, seed_output]
)
# Iniciar o Gradio (sem queue, pois usamos FastAPI para a API)
demo.launch()