|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include <iostream> |
|
#include <memory> |
|
#include <string> |
|
#include <getopt.h> |
|
#include "clip.h" |
|
#include "llava.h" |
|
#include "stb_image.h" |
|
#include "common.h" |
|
#include "json.hpp" |
|
#include "llama.h" |
|
#include "grammar-parser.h" |
|
#include "backend.pb.h" |
|
#include "backend.grpc.pb.h" |
|
#include "utils.hpp" |
|
|
|
|
|
#include <cstddef> |
|
#include <thread> |
|
#include <mutex> |
|
#include <chrono> |
|
#include <regex> |
|
#include <condition_variable> |
|
#include <grpcpp/ext/proto_server_reflection_plugin.h> |
|
#include <grpcpp/grpcpp.h> |
|
#include <grpcpp/health_check_service_interface.h> |
|
#include <atomic> |
|
#include <signal.h> |
|
|
|
using grpc::Server; |
|
using grpc::ServerBuilder; |
|
using grpc::ServerContext; |
|
using grpc::Status; |
|
|
|
|
|
using backend::HealthMessage; |
|
|
|
|
|
|
|
|
|
using json = nlohmann::json; |
|
|
|
struct server_params |
|
{ |
|
std::string hostname = "127.0.0.1"; |
|
std::vector<std::string> api_keys; |
|
std::string public_path = "examples/server/public"; |
|
std::string chat_template = ""; |
|
int32_t port = 8080; |
|
int32_t read_timeout = 600; |
|
int32_t write_timeout = 600; |
|
bool slots_endpoint = true; |
|
bool metrics_endpoint = false; |
|
}; |
|
|
|
bool server_verbose = false; |
|
bool server_log_json = true; |
|
|
|
static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b) |
|
{ |
|
size_t i; |
|
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) |
|
{ |
|
} |
|
return i; |
|
} |
|
|
|
enum stop_type |
|
{ |
|
STOP_FULL, |
|
STOP_PARTIAL, |
|
}; |
|
|
|
static bool ends_with(const std::string &str, const std::string &suffix) |
|
{ |
|
return str.size() >= suffix.size() && |
|
0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix); |
|
} |
|
|
|
static size_t find_partial_stop_string(const std::string &stop, |
|
const std::string &text) |
|
{ |
|
if (!text.empty() && !stop.empty()) |
|
{ |
|
const char text_last_char = text.back(); |
|
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) |
|
{ |
|
if (stop[char_index] == text_last_char) |
|
{ |
|
const std::string current_partial = stop.substr(0, char_index + 1); |
|
if (ends_with(text, current_partial)) |
|
{ |
|
return text.size() - char_index - 1; |
|
} |
|
} |
|
} |
|
} |
|
return std::string::npos; |
|
} |
|
|
|
|
|
template <class Iter> |
|
static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end) |
|
{ |
|
std::string ret; |
|
for (; begin != end; ++begin) |
|
{ |
|
ret += llama_token_to_piece(ctx, *begin); |
|
} |
|
return ret; |
|
} |
|
|
|
|
|
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token) |
|
{ |
|
std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token); |
|
|
|
|
|
if (out.size() == 1 && (out[0] & 0x80) == 0x80) |
|
{ |
|
std::stringstream ss; |
|
ss << std::hex << (out[0] & 0xff); |
|
std::string res(ss.str()); |
|
out = "byte: \\x" + res; |
|
} |
|
return out; |
|
} |
|
|
|
|
|
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> &probs) |
|
{ |
|
json out = json::array(); |
|
for (const auto &prob : probs) |
|
{ |
|
json probs_for_token = json::array(); |
|
for (const auto &p : prob.probs) |
|
{ |
|
std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok); |
|
probs_for_token.push_back(json |
|
{ |
|
{"tok_str", tok_str}, |
|
{"prob", p.prob}, |
|
}); |
|
} |
|
std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok); |
|
out.push_back(json{ |
|
{"content", tok_str}, |
|
{"probs", probs_for_token}, |
|
}); |
|
} |
|
return out; |
|
} |
|
|
|
struct llama_client_slot |
|
{ |
|
int id; |
|
int task_id = -1; |
|
|
|
struct slot_params params; |
|
|
|
slot_state state = IDLE; |
|
slot_command command = NONE; |
|
|
|
|
|
int64_t t_last_used = -1; |
|
|
|
|
|
int32_t n_ctx = 0; |
|
int32_t n_past = 0; |
|
int32_t n_decoded = 0; |
|
int32_t n_remaining = -1; |
|
int32_t i_batch = -1; |
|
int32_t n_predict = -1; |
|
|
|
int32_t num_prompt_tokens = 0; |
|
int32_t num_prompt_tokens_processed = 0; |
|
|
|
json prompt; |
|
std::string generated_text; |
|
llama_token sampled; |
|
std::vector<llama_token> cache_tokens; |
|
std::vector<completion_token_output> generated_token_probs; |
|
|
|
bool infill = false; |
|
bool embedding = false; |
|
bool has_next_token = true; |
|
bool truncated = false; |
|
bool stopped_eos = false; |
|
bool stopped_word = false; |
|
bool stopped_limit = false; |
|
|
|
bool oaicompat = false; |
|
std::string oaicompat_model; |
|
|
|
std::string stopping_word; |
|
|
|
|
|
struct llama_sampling_params sparams; |
|
llama_sampling_context *ctx_sampling = nullptr; |
|
|
|
int32_t ga_i = 0; |
|
int32_t ga_n = 1; |
|
int32_t ga_w = 512; |
|
|
|
int32_t n_past_se = 0; |
|
|
|
|
|
std::vector<slot_image> images; |
|
|
|
|
|
size_t sent_count = 0; |
|
size_t sent_token_probs_index = 0; |
|
|
|
int64_t t_start_process_prompt; |
|
int64_t t_start_genereration; |
|
|
|
double t_prompt_processing; |
|
double t_token_generation; |
|
|
|
|
|
int multitask_id = -1; |
|
|
|
void reset() { |
|
num_prompt_tokens = 0; |
|
generated_text = ""; |
|
truncated = false; |
|
stopped_eos = false; |
|
stopped_word = false; |
|
stopped_limit = false; |
|
stopping_word = ""; |
|
n_past = 0; |
|
sent_count = 0; |
|
sent_token_probs_index = 0; |
|
infill = false; |
|
ga_i = 0; |
|
n_past_se = 0; |
|
|
|
generated_token_probs.clear(); |
|
|
|
for (slot_image & img : images) |
|
{ |
|
free(img.image_embedding); |
|
if (img.img_data) { |
|
clip_image_u8_free(img.img_data); |
|
} |
|
img.prefix_prompt = ""; |
|
} |
|
|
|
images.clear(); |
|
} |
|
|
|
bool has_budget(gpt_params &global_params) { |
|
if (params.n_predict == -1 && global_params.n_predict == -1) |
|
{ |
|
return true; |
|
} |
|
|
|
n_remaining = -1; |
|
|
|
if (params.n_predict != -1) |
|
{ |
|
n_remaining = params.n_predict - n_decoded; |
|
} |
|
else if (global_params.n_predict != -1) |
|
{ |
|
n_remaining = global_params.n_predict - n_decoded; |
|
} |
|
|
|
return n_remaining > 0; |
|
} |
|
|
|
bool available() const { |
|
return state == IDLE && command == NONE; |
|
} |
|
|
|
bool is_processing() const { |
|
return (state == IDLE && command == LOAD_PROMPT) || state == PROCESSING; |
|
} |
|
|
|
void add_token_string(const completion_token_output &token) { |
|
if (command == RELEASE) |
|
{ |
|
return; |
|
} |
|
cache_tokens.push_back(token.tok); |
|
generated_token_probs.push_back(token); |
|
} |
|
|
|
void release() { |
|
if (state == PROCESSING) |
|
{ |
|
t_token_generation = (ggml_time_us() - t_start_genereration) / 1e3; |
|
command = RELEASE; |
|
} |
|
} |
|
|
|
json get_formated_timings() { |
|
return json |
|
{ |
|
{"prompt_n", num_prompt_tokens_processed}, |
|
{"prompt_ms", t_prompt_processing}, |
|
{"prompt_per_token_ms", t_prompt_processing / num_prompt_tokens_processed}, |
|
{"prompt_per_second", 1e3 / t_prompt_processing * num_prompt_tokens_processed}, |
|
|
|
{"predicted_n", n_decoded}, |
|
{"predicted_ms", t_token_generation}, |
|
{"predicted_per_token_ms", t_token_generation / n_decoded}, |
|
{"predicted_per_second", 1e3 / t_token_generation * n_decoded}, |
|
}; |
|
} |
|
|
|
void print_timings() const { |
|
char buffer[512]; |
|
double t_token = t_prompt_processing / num_prompt_tokens_processed; |
|
double n_tokens_second = 1e3 / t_prompt_processing * num_prompt_tokens_processed; |
|
sprintf(buffer, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)", |
|
t_prompt_processing, num_prompt_tokens_processed, |
|
t_token, n_tokens_second); |
|
LOG_INFO(buffer, { |
|
{"slot_id", id}, |
|
{"task_id", task_id}, |
|
{"t_prompt_processing", t_prompt_processing}, |
|
{"num_prompt_tokens_processed", num_prompt_tokens_processed}, |
|
{"t_token", t_token}, |
|
{"n_tokens_second", n_tokens_second}, |
|
}); |
|
|
|
t_token = t_token_generation / n_decoded; |
|
n_tokens_second = 1e3 / t_token_generation * n_decoded; |
|
sprintf(buffer, "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)", |
|
t_token_generation, n_decoded, |
|
t_token, n_tokens_second); |
|
LOG_INFO(buffer, { |
|
{"slot_id", id}, |
|
{"task_id", task_id}, |
|
{"t_token_generation", t_token_generation}, |
|
{"n_decoded", n_decoded}, |
|
{"t_token", t_token}, |
|
{"n_tokens_second", n_tokens_second}, |
|
}); |
|
|
|
sprintf(buffer, " total time = %10.2f ms", t_prompt_processing + t_token_generation); |
|
LOG_INFO(buffer, { |
|
{"slot_id", id}, |
|
{"task_id", task_id}, |
|
{"t_prompt_processing", t_prompt_processing}, |
|
{"t_token_generation", t_token_generation}, |
|
{"t_total", t_prompt_processing + t_token_generation}, |
|
}); |
|
} |
|
}; |
|
|
|
struct llama_metrics { |
|
uint64_t n_prompt_tokens_processed_total = 0; |
|
uint64_t n_tokens_predicted_total = 0; |
|
|
|
uint64_t n_prompt_tokens_processed = 0; |
|
uint64_t t_prompt_processing = 0; |
|
|
|
uint64_t n_tokens_predicted = 0; |
|
uint64_t t_tokens_generation = 0; |
|
|
|
|
|
void on_prompt_eval(const llama_client_slot &slot) { |
|
n_prompt_tokens_processed_total += slot.num_prompt_tokens_processed; |
|
|
|
n_prompt_tokens_processed += slot.num_prompt_tokens_processed; |
|
t_prompt_processing += slot.t_prompt_processing; |
|
} |
|
|
|
void on_prediction(const llama_client_slot &slot) { |
|
n_tokens_predicted_total += slot.n_decoded; |
|
|
|
n_tokens_predicted += slot.n_decoded; |
|
t_tokens_generation += slot.t_token_generation; |
|
} |
|
|
|
void reset_bucket() { |
|
n_prompt_tokens_processed = 0; |
|
t_prompt_processing = 0; |
|
n_tokens_predicted = 0; |
|
t_tokens_generation = 0; |
|
} |
|
}; |
|
|
|
struct llama_server_context |
|
{ |
|
llama_model *model = nullptr; |
|
llama_context *ctx = nullptr; |
|
|
|
clip_ctx *clp_ctx = nullptr; |
|
|
|
gpt_params params; |
|
|
|
llama_batch batch; |
|
|
|
bool multimodal = false; |
|
bool clean_kv_cache = true; |
|
bool all_slots_are_idle = false; |
|
bool add_bos_token = true; |
|
|
|
int32_t n_ctx; |
|
|
|
|
|
bool system_need_update = false; |
|
|
|
std::string system_prompt; |
|
std::vector<llama_token> system_tokens; |
|
|
|
std::string name_user; |
|
std::string name_assistant; |
|
|
|
|
|
std::vector<llama_client_slot> slots; |
|
json default_generation_settings_for_props; |
|
|
|
llama_server_queue queue_tasks; |
|
llama_server_response queue_results; |
|
|
|
llama_metrics metrics; |
|
|
|
~llama_server_context() |
|
{ |
|
if (ctx) |
|
{ |
|
llama_free(ctx); |
|
ctx = nullptr; |
|
} |
|
if (model) |
|
{ |
|
llama_free_model(model); |
|
model = nullptr; |
|
} |
|
} |
|
|
|
bool load_model(const gpt_params ¶ms_) |
|
{ |
|
params = params_; |
|
if (!params.mmproj.empty()) { |
|
multimodal = true; |
|
LOG_INFO("Multi Modal Mode Enabled", {}); |
|
clp_ctx = clip_model_load(params.mmproj.c_str(), 1); |
|
if(clp_ctx == nullptr) { |
|
LOG_ERROR("unable to load clip model", {{"model", params.mmproj}}); |
|
return false; |
|
} |
|
|
|
if (params.n_ctx < 2048) { |
|
params.n_ctx = 2048; |
|
} |
|
} |
|
|
|
llama_init_result llama_init = llama_init_from_gpt_params(params); |
|
model = llama_init.model; |
|
ctx = llama_init.context; |
|
if (model == nullptr) |
|
{ |
|
LOG_ERROR("unable to load model", {{"model", params.model}}); |
|
return false; |
|
} |
|
|
|
if (multimodal) { |
|
const int n_embd_clip = clip_n_mmproj_embd(clp_ctx); |
|
const int n_embd_llm = llama_n_embd(model); |
|
if (n_embd_clip != n_embd_llm) { |
|
LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm); |
|
llama_free(ctx); |
|
llama_free_model(model); |
|
return false; |
|
} |
|
} |
|
|
|
n_ctx = llama_n_ctx(ctx); |
|
|
|
add_bos_token = llama_should_add_bos_token(model); |
|
|
|
return true; |
|
} |
|
|
|
void validate_model_chat_template(server_params & sparams) { |
|
llama_chat_message chat[] = {{"user", "test"}}; |
|
std::vector<char> buf(1); |
|
int res = llama_chat_apply_template(model, nullptr, chat, 1, true, buf.data(), buf.size()); |
|
if (res < 0) { |
|
LOG_ERROR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {}); |
|
sparams.chat_template = "<|im_start|>"; |
|
} |
|
} |
|
|
|
void initialize() { |
|
|
|
all_slots_are_idle = true; |
|
|
|
const int32_t n_ctx_slot = n_ctx / params.n_parallel; |
|
|
|
LOG_INFO("initializing slots", {{"n_slots", params.n_parallel}}); |
|
for (int i = 0; i < params.n_parallel; i++) |
|
{ |
|
llama_client_slot slot; |
|
|
|
slot.id = i; |
|
slot.n_ctx = n_ctx_slot; |
|
slot.n_predict = params.n_predict; |
|
|
|
LOG_INFO("new slot", { |
|
{"slot_id", slot.id}, |
|
{"n_ctx_slot", slot.n_ctx} |
|
}); |
|
|
|
const int ga_n = params.grp_attn_n; |
|
const int ga_w = params.grp_attn_w; |
|
|
|
if (ga_n != 1) { |
|
GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); |
|
GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); |
|
|
|
|
|
|
|
LOG_INFO("slot self-extend", { |
|
{"slot_id", slot.id}, |
|
{"ga_n", ga_n}, |
|
{"ga_w", ga_w} |
|
}); |
|
} |
|
|
|
slot.ga_i = 0; |
|
slot.ga_n = ga_n; |
|
slot.ga_w = ga_w; |
|
|
|
slot.reset(); |
|
|
|
slots.push_back(slot); |
|
} |
|
|
|
default_generation_settings_for_props = get_formated_generation(slots.front()); |
|
default_generation_settings_for_props["seed"] = -1; |
|
|
|
batch = llama_batch_init(n_ctx, 0, params.n_parallel); |
|
} |
|
|
|
std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const |
|
{ |
|
|
|
|
|
|
|
const bool TMP_FORCE_SPECIAL = true; |
|
|
|
|
|
|
|
std::vector<llama_token> prompt_tokens; |
|
|
|
if (json_prompt.is_array()) |
|
{ |
|
bool first = true; |
|
for (const auto& p : json_prompt) |
|
{ |
|
if (p.is_string()) |
|
{ |
|
auto s = p.template get<std::string>(); |
|
std::vector<llama_token> p; |
|
if (first) |
|
{ |
|
p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL); |
|
first = false; |
|
} |
|
else |
|
{ |
|
p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL); |
|
} |
|
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end()); |
|
} |
|
else |
|
{ |
|
if (first) |
|
{ |
|
first = false; |
|
} |
|
prompt_tokens.push_back(p.template get<llama_token>()); |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
auto s = json_prompt.template get<std::string>(); |
|
prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL); |
|
} |
|
|
|
return prompt_tokens; |
|
} |
|
|
|
llama_client_slot* get_slot(int id) { |
|
int64_t t_last = ggml_time_us(); |
|
llama_client_slot *last_used = nullptr; |
|
|
|
for (llama_client_slot & slot : slots) |
|
{ |
|
if (slot.id == id && slot.available()) |
|
{ |
|
return &slot; |
|
} |
|
|
|
if (slot.available() && slot.t_last_used < t_last) |
|
{ |
|
last_used = &slot; |
|
t_last = slot.t_last_used; |
|
} |
|
} |
|
|
|
return last_used; |
|
} |
|
|
|
bool launch_slot_with_data(llama_client_slot* &slot, json data) { |
|
slot_params default_params; |
|
llama_sampling_params default_sparams; |
|
|
|
slot->params.stream = json_value(data, "stream", false); |
|
slot->params.cache_prompt = json_value(data, "cache_prompt", false); |
|
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict); |
|
slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k); |
|
slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p); |
|
slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p); |
|
slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z); |
|
slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p); |
|
slot->sparams.temp = json_value(data, "temperature", default_sparams.temp); |
|
slot->sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range); |
|
slot->sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent); |
|
slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n); |
|
slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat); |
|
slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq); |
|
slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present); |
|
slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat); |
|
slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau); |
|
slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta); |
|
slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl); |
|
slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep); |
|
slot->params.seed = json_value(data, "seed", default_params.seed); |
|
slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar); |
|
slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs); |
|
slot->sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep); |
|
|
|
if (slot->n_predict > 0 && slot->params.n_predict > slot->n_predict) { |
|
|
|
LOG_WARNING("Max tokens to predict exceeds server configuration", { |
|
{"params.n_predict", slot->params.n_predict}, |
|
{"slot.n_predict", slot->n_predict}, |
|
}); |
|
slot->params.n_predict = slot->n_predict; |
|
} |
|
|
|
|
|
if (data.count("input_prefix") != 0) |
|
{ |
|
slot->params.input_prefix = data["input_prefix"]; |
|
} |
|
else |
|
{ |
|
slot->params.input_prefix = ""; |
|
} |
|
|
|
if (data.count("input_suffix") != 0) |
|
{ |
|
slot->params.input_suffix = data["input_suffix"]; |
|
} |
|
else |
|
{ |
|
slot->params.input_suffix = ""; |
|
} |
|
|
|
if (data.count("prompt") != 0) |
|
{ |
|
slot->prompt = data["prompt"]; |
|
} |
|
else |
|
{ |
|
slot->prompt = ""; |
|
} |
|
|
|
slot->sparams.penalty_prompt_tokens.clear(); |
|
slot->sparams.use_penalty_prompt_tokens = false; |
|
const auto &penalty_prompt = data.find("penalty_prompt"); |
|
if (penalty_prompt != data.end()) |
|
{ |
|
if (penalty_prompt->is_string()) |
|
{ |
|
const auto penalty_prompt_string = penalty_prompt->get<std::string>(); |
|
auto penalty_tokens = llama_tokenize(model, penalty_prompt_string, false); |
|
slot->sparams.penalty_prompt_tokens.swap(penalty_tokens); |
|
if (slot->params.n_predict > 0) |
|
{ |
|
slot->sparams.penalty_prompt_tokens.reserve(slot->sparams.penalty_prompt_tokens.size() + slot->params.n_predict); |
|
} |
|
slot->sparams.use_penalty_prompt_tokens = true; |
|
} |
|
else if (penalty_prompt->is_array()) |
|
{ |
|
const auto n_tokens = penalty_prompt->size(); |
|
slot->sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot->params.n_predict)); |
|
const int n_vocab = llama_n_vocab(model); |
|
for (const auto &penalty_token : *penalty_prompt) |
|
{ |
|
if (penalty_token.is_number_integer()) |
|
{ |
|
const auto tok = penalty_token.get<llama_token>(); |
|
if (tok >= 0 && tok < n_vocab) |
|
{ |
|
slot->sparams.penalty_prompt_tokens.push_back(tok); |
|
} |
|
} |
|
} |
|
slot->sparams.use_penalty_prompt_tokens = true; |
|
} |
|
} |
|
|
|
slot->sparams.logit_bias.clear(); |
|
|
|
if (json_value(data, "ignore_eos", false)) |
|
{ |
|
slot->sparams.logit_bias[llama_token_eos(model)] = -INFINITY; |
|
} |
|
|
|
const auto &logit_bias = data.find("logit_bias"); |
|
if (logit_bias != data.end() && logit_bias->is_array()) |
|
{ |
|
const int n_vocab = llama_n_vocab(model); |
|
for (const auto &el : *logit_bias) |
|
{ |
|
if (el.is_array() && el.size() == 2) |
|
{ |
|
float bias; |
|
if (el[1].is_number()) |
|
{ |
|
bias = el[1].get<float>(); |
|
} |
|
else if (el[1].is_boolean() && !el[1].get<bool>()) |
|
{ |
|
bias = -INFINITY; |
|
} |
|
else |
|
{ |
|
continue; |
|
} |
|
|
|
if (el[0].is_number_integer()) |
|
{ |
|
llama_token tok = el[0].get<llama_token>(); |
|
if (tok >= 0 && tok < n_vocab) |
|
{ |
|
slot->sparams.logit_bias[tok] = bias; |
|
} |
|
} |
|
else if (el[0].is_string()) |
|
{ |
|
auto toks = llama_tokenize(model, el[0].get<std::string>(), false); |
|
for (auto tok : toks) |
|
{ |
|
slot->sparams.logit_bias[tok] = bias; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
slot->params.antiprompt.clear(); |
|
|
|
const auto &stop = data.find("stop"); |
|
if (stop != data.end() && stop->is_array()) |
|
{ |
|
for (const auto &word : *stop) |
|
{ |
|
if (!word.empty()) |
|
{ |
|
slot->params.antiprompt.push_back(word); |
|
} |
|
} |
|
} |
|
|
|
const auto &samplers_sequence = data.find("samplers"); |
|
if (samplers_sequence != data.end() && samplers_sequence->is_array()) |
|
{ |
|
std::vector<std::string> sampler_names; |
|
for (const auto &sampler_name : *samplers_sequence) |
|
{ |
|
if (sampler_name.is_string()) |
|
{ |
|
sampler_names.emplace_back(sampler_name); |
|
} |
|
} |
|
slot->sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, false); |
|
} |
|
else |
|
{ |
|
slot->sparams.samplers_sequence = default_sparams.samplers_sequence; |
|
} |
|
|
|
if (multimodal) |
|
{ |
|
const auto &images_data = data.find("image_data"); |
|
if (images_data != data.end() && images_data->is_array()) |
|
{ |
|
for (const auto &img : *images_data) |
|
{ |
|
const std::vector<uint8_t> image_buffer = base64_decode(img["data"].get<std::string>()); |
|
|
|
slot_image img_sl; |
|
img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size(); |
|
img_sl.img_data = clip_image_u8_init(); |
|
if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data)) |
|
{ |
|
LOG_ERROR("failed to load image", { |
|
{"slot_id", slot->id}, |
|
{"img_sl_id", img_sl.id} |
|
}); |
|
return false; |
|
} |
|
LOG_VERBOSE("image loaded", { |
|
{"slot_id", slot->id}, |
|
{"img_sl_id", img_sl.id} |
|
}); |
|
img_sl.request_encode_image = true; |
|
slot->images.push_back(img_sl); |
|
} |
|
|
|
|
|
if (slot->images.size() > 0 && !slot->prompt.is_array()) |
|
{ |
|
std::string prompt = slot->prompt.get<std::string>(); |
|
size_t pos = 0, begin_prefix = 0; |
|
std::string pattern = "[img-"; |
|
while ((pos = prompt.find(pattern, pos)) != std::string::npos) { |
|
size_t end_prefix = pos; |
|
pos += pattern.length(); |
|
size_t end_pos = prompt.find(']', pos); |
|
if (end_pos != std::string::npos) |
|
{ |
|
std::string image_id = prompt.substr(pos, end_pos - pos); |
|
try |
|
{ |
|
int img_id = std::stoi(image_id); |
|
bool found = false; |
|
for (slot_image &img : slot->images) |
|
{ |
|
if (img.id == img_id) { |
|
found = true; |
|
img.prefix_prompt = prompt.substr(begin_prefix, end_prefix - begin_prefix); |
|
begin_prefix = end_pos + 1; |
|
break; |
|
} |
|
} |
|
if (!found) { |
|
LOG_TEE("ERROR: Image with id: %i, not found.\n", img_id); |
|
slot->images.clear(); |
|
return false; |
|
} |
|
} catch (const std::invalid_argument& e) { |
|
LOG_TEE("Invalid image number id in prompt\n"); |
|
slot->images.clear(); |
|
return false; |
|
} |
|
} |
|
} |
|
slot->prompt = ""; |
|
slot->params.input_suffix = prompt.substr(begin_prefix); |
|
slot->params.cache_prompt = false; |
|
} |
|
} |
|
} |
|
|
|
if (slot->ctx_sampling != nullptr) |
|
{ |
|
llama_sampling_free(slot->ctx_sampling); |
|
} |
|
slot->ctx_sampling = llama_sampling_init(slot->sparams); |
|
llama_set_rng_seed(ctx, slot->params.seed); |
|
slot->command = LOAD_PROMPT; |
|
|
|
all_slots_are_idle = false; |
|
|
|
LOG_INFO("slot is processing task", { |
|
{"slot_id", slot->id}, |
|
{"task_id", slot->task_id}, |
|
}); |
|
|
|
LOG_TEE("sampling: \n%s\n", llama_sampling_print(slot->sparams).c_str()); |
|
|
|
return true; |
|
} |
|
|
|
void kv_cache_clear() { |
|
|
|
llama_kv_cache_clear(ctx); |
|
clean_kv_cache = false; |
|
} |
|
|
|
void update_system_prompt() { |
|
kv_cache_clear(); |
|
system_tokens.clear(); |
|
|
|
if (!system_prompt.empty()) { |
|
system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token); |
|
|
|
llama_batch_clear(batch); |
|
|
|
for (int i = 0; i < (int)system_tokens.size(); ++i) |
|
{ |
|
llama_batch_add(batch, system_tokens[i], i, { 0 }, false); |
|
} |
|
|
|
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += params.n_batch) |
|
{ |
|
const int32_t n_tokens = std::min(params.n_batch, (int32_t) (batch.n_tokens - i)); |
|
llama_batch batch_view = { |
|
n_tokens, |
|
batch.token + i, |
|
nullptr, |
|
batch.pos + i, |
|
batch.n_seq_id + i, |
|
batch.seq_id + i, |
|
batch.logits + i, |
|
0, 0, 0, |
|
}; |
|
if (llama_decode(ctx, batch_view) != 0) |
|
{ |
|
LOG_TEE("%s: llama_decode() failed\n", __func__); |
|
return; |
|
} |
|
} |
|
|
|
|
|
for (int32_t i = 1; i < params.n_parallel; ++i) |
|
{ |
|
llama_kv_cache_seq_cp(ctx, 0, i, 0, system_tokens.size()); |
|
} |
|
} |
|
|
|
LOG_TEE("system prompt updated\n"); |
|
system_need_update = false; |
|
} |
|
|
|
void notify_system_prompt_changed() { |
|
|
|
for (llama_client_slot &slot : slots) |
|
{ |
|
slot.release(); |
|
} |
|
|
|
system_need_update = true; |
|
} |
|
|
|
void process_system_prompt_data(const json &sys_props) { |
|
system_prompt = sys_props.value("prompt", ""); |
|
name_user = sys_props.value("anti_prompt", ""); |
|
name_assistant = sys_props.value("assistant_name", ""); |
|
|
|
|
|
notify_system_prompt_changed(); |
|
} |
|
|
|
static size_t find_stopping_strings(const std::string &text, const size_t last_token_size, |
|
const stop_type type, llama_client_slot &slot) |
|
{ |
|
size_t stop_pos = std::string::npos; |
|
|
|
for (const std::string &word : slot.params.antiprompt) |
|
{ |
|
size_t pos; |
|
if (type == STOP_FULL) |
|
{ |
|
const size_t tmp = word.size() + last_token_size; |
|
const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0; |
|
pos = text.find(word, from_pos); |
|
} |
|
else |
|
{ |
|
pos = find_partial_stop_string(word, text); |
|
} |
|
if (pos != std::string::npos && |
|
(stop_pos == std::string::npos || pos < stop_pos)) |
|
{ |
|
if (type == STOP_FULL) |
|
{ |
|
slot.stopped_word = true; |
|
slot.stopping_word = word; |
|
slot.has_next_token = false; |
|
} |
|
stop_pos = pos; |
|
} |
|
} |
|
|
|
return stop_pos; |
|
} |
|
|
|
bool process_token(completion_token_output &result, llama_client_slot &slot) { |
|
|
|
const std::string token_str = llama_token_to_piece(ctx, result.tok); |
|
slot.sampled = result.tok; |
|
|
|
|
|
slot.generated_text += token_str; |
|
slot.has_next_token = true; |
|
|
|
if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1) |
|
{ |
|
|
|
slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok); |
|
} |
|
|
|
|
|
bool incomplete = false; |
|
for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i) |
|
{ |
|
unsigned char c = slot.generated_text[slot.generated_text.size() - i]; |
|
if ((c & 0xC0) == 0x80) |
|
{ |
|
|
|
continue; |
|
} |
|
if ((c & 0xE0) == 0xC0) |
|
{ |
|
|
|
incomplete = i < 2; |
|
} |
|
else if ((c & 0xF0) == 0xE0) |
|
{ |
|
|
|
incomplete = i < 3; |
|
} |
|
else if ((c & 0xF8) == 0xF0) |
|
{ |
|
|
|
incomplete = i < 4; |
|
} |
|
|
|
break; |
|
} |
|
|
|
if (!incomplete) |
|
{ |
|
size_t pos = std::min(slot.sent_count, slot.generated_text.size()); |
|
const std::string str_test = slot.generated_text.substr(pos); |
|
bool is_stop_full = false; |
|
size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot); |
|
if (stop_pos != std::string::npos) |
|
{ |
|
is_stop_full = true; |
|
slot.generated_text.erase( |
|
slot.generated_text.begin() + pos + stop_pos, |
|
slot.generated_text.end()); |
|
pos = std::min(slot.sent_count, slot.generated_text.size()); |
|
} |
|
else |
|
{ |
|
is_stop_full = false; |
|
stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_PARTIAL, slot); |
|
} |
|
|
|
|
|
if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0)) |
|
{ |
|
|
|
result.text_to_send = slot.generated_text.substr(pos, std::string::npos); |
|
slot.sent_count += result.text_to_send.size(); |
|
|
|
} |
|
slot.add_token_string(result); |
|
if (slot.params.stream) |
|
{ |
|
send_partial_response(slot, result); |
|
} |
|
} |
|
|
|
if (incomplete) |
|
{ |
|
slot.has_next_token = true; |
|
} |
|
|
|
|
|
if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params)) |
|
{ |
|
slot.stopped_limit = true; |
|
slot.has_next_token = false; |
|
} |
|
|
|
if (result.tok == llama_token_eos(model)) |
|
{ |
|
slot.stopped_eos = true; |
|
slot.has_next_token = false; |
|
LOG_VERBOSE("eos token found", {}); |
|
} |
|
|
|
LOG_VERBOSE("next token", { |
|
{"token", result.tok}, |
|
{"token_text", tokens_to_output_formatted_string(ctx, result.tok)}, |
|
{"has_next_token", slot.has_next_token}, |
|
{"n_remain", slot.n_remaining}, |
|
{"num_tokens_predicted", slot.n_decoded}, |
|
{"stopped_eos", slot.stopped_eos}, |
|
{"stopped_word", slot.stopped_word}, |
|
{"stopped_limit", slot.stopped_limit}, |
|
{"stopping_word", slot.stopping_word}, |
|
}); |
|
|
|
return slot.has_next_token; |
|
} |
|
|
|
bool process_images(llama_client_slot &slot) const |
|
{ |
|
for (slot_image &img : slot.images) |
|
{ |
|
if (!img.request_encode_image) |
|
{ |
|
continue; |
|
} |
|
|
|
if (!llava_image_embed_make_with_clip_img(clp_ctx, params.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) { |
|
LOG_TEE("Error processing the given image"); |
|
return false; |
|
} |
|
|
|
img.request_encode_image = false; |
|
} |
|
|
|
return slot.images.size() > 0; |
|
} |
|
|
|
void send_error(task_server& task, const std::string &error) |
|
{ |
|
LOG_TEE("task %i - error: %s\n", task.id, error.c_str()); |
|
task_result res; |
|
res.id = task.id; |
|
res.multitask_id = task.multitask_id; |
|
res.stop = false; |
|
res.error = true; |
|
res.result_json = { { "content", error } }; |
|
queue_results.send(res); |
|
} |
|
|
|
json get_formated_generation(llama_client_slot &slot) |
|
{ |
|
const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model)); |
|
const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() && |
|
eos_bias->second < 0.0f && std::isinf(eos_bias->second); |
|
std::vector<std::string> samplers_sequence; |
|
for (const auto &sampler_type : slot.sparams.samplers_sequence) |
|
{ |
|
samplers_sequence.emplace_back(llama_sampling_type_to_str(sampler_type)); |
|
} |
|
|
|
return json { |
|
{"n_ctx", slot.n_ctx}, |
|
{"n_predict", slot.n_predict}, |
|
{"model", params.model_alias}, |
|
{"seed", slot.params.seed}, |
|
{"temperature", slot.sparams.temp}, |
|
{"dynatemp_range", slot.sparams.dynatemp_range}, |
|
{"dynatemp_exponent", slot.sparams.dynatemp_exponent}, |
|
{"top_k", slot.sparams.top_k}, |
|
{"top_p", slot.sparams.top_p}, |
|
{"min_p", slot.sparams.min_p}, |
|
{"tfs_z", slot.sparams.tfs_z}, |
|
{"typical_p", slot.sparams.typical_p}, |
|
{"repeat_last_n", slot.sparams.penalty_last_n}, |
|
{"repeat_penalty", slot.sparams.penalty_repeat}, |
|
{"presence_penalty", slot.sparams.penalty_present}, |
|
{"frequency_penalty", slot.sparams.penalty_freq}, |
|
{"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens}, |
|
{"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens}, |
|
{"mirostat", slot.sparams.mirostat}, |
|
{"mirostat_tau", slot.sparams.mirostat_tau}, |
|
{"mirostat_eta", slot.sparams.mirostat_eta}, |
|
{"penalize_nl", slot.sparams.penalize_nl}, |
|
{"stop", slot.params.antiprompt}, |
|
{"n_predict", slot.params.n_predict}, |
|
{"n_keep", params.n_keep}, |
|
{"ignore_eos", ignore_eos}, |
|
{"stream", slot.params.stream}, |
|
{"logit_bias", slot.sparams.logit_bias}, |
|
{"n_probs", slot.sparams.n_probs}, |
|
{"min_keep", slot.sparams.min_keep}, |
|
{"grammar", slot.sparams.grammar}, |
|
{"samplers", samplers_sequence} |
|
}; |
|
} |
|
|
|
void send_partial_response(llama_client_slot &slot, completion_token_output tkn) |
|
{ |
|
task_result res; |
|
res.id = slot.task_id; |
|
res.multitask_id = slot.multitask_id; |
|
res.error = false; |
|
res.stop = false; |
|
|
|
res.result_json = json |
|
{ |
|
{"content", tkn.text_to_send}, |
|
{"stop", false}, |
|
{"slot_id", slot.id}, |
|
{"multimodal", multimodal} |
|
}; |
|
|
|
if (slot.sparams.n_probs > 0) |
|
{ |
|
std::vector<completion_token_output> probs_output = {}; |
|
const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false); |
|
size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size()); |
|
size_t probs_stop_pos = std::min(slot.sent_token_probs_index + to_send_toks.size(), slot.generated_token_probs.size()); |
|
if (probs_pos < probs_stop_pos) |
|
{ |
|
probs_output = std::vector<completion_token_output>(slot.generated_token_probs.begin() + probs_pos, slot.generated_token_probs.begin() + probs_stop_pos); |
|
} |
|
slot.sent_token_probs_index = probs_stop_pos; |
|
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output); |
|
} |
|
|
|
if (slot.oaicompat) |
|
{ |
|
res.result_json["oaicompat_token_ctr"] = slot.n_decoded; |
|
res.result_json["model"] = slot.oaicompat_model; |
|
} |
|
|
|
queue_results.send(res); |
|
} |
|
|
|
void send_final_response(llama_client_slot &slot) |
|
{ |
|
task_result res; |
|
res.id = slot.task_id; |
|
res.multitask_id = slot.multitask_id; |
|
res.error = false; |
|
res.stop = true; |
|
|
|
res.result_json = json |
|
{ |
|
{"content", !slot.params.stream ? slot.generated_text : ""}, |
|
{"slot_id", slot.id}, |
|
{"stop", true}, |
|
{"model", params.model_alias}, |
|
{"tokens_predicted", slot.n_decoded}, |
|
{"tokens_evaluated", slot.num_prompt_tokens}, |
|
{"generation_settings", get_formated_generation(slot)}, |
|
{"prompt", slot.prompt}, |
|
{"truncated", slot.truncated}, |
|
{"stopped_eos", slot.stopped_eos}, |
|
{"stopped_word", slot.stopped_word}, |
|
{"stopped_limit", slot.stopped_limit}, |
|
{"stopping_word", slot.stopping_word}, |
|
{"tokens_cached", slot.n_past}, |
|
{"timings", slot.get_formated_timings()} |
|
}; |
|
|
|
if (slot.sparams.n_probs > 0) |
|
{ |
|
std::vector<completion_token_output> probs = {}; |
|
if (!slot.params.stream && slot.stopped_word) |
|
{ |
|
const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false); |
|
probs = std::vector<completion_token_output>(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size()); |
|
} |
|
else |
|
{ |
|
probs = std::vector<completion_token_output>( |
|
slot.generated_token_probs.begin(), |
|
slot.generated_token_probs.end()); |
|
} |
|
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs); |
|
} |
|
|
|
if (slot.oaicompat) |
|
{ |
|
res.result_json["oaicompat_token_ctr"] = slot.n_decoded; |
|
res.result_json["model"] = slot.oaicompat_model; |
|
} |
|
|
|
queue_results.send(res); |
|
} |
|
|
|
void send_embedding(llama_client_slot &slot) |
|
{ |
|
task_result res; |
|
res.id = slot.task_id; |
|
res.multitask_id = slot.multitask_id; |
|
res.error = false; |
|
res.stop = true; |
|
|
|
const int n_embd = llama_n_embd(model); |
|
if (!params.embedding) |
|
{ |
|
LOG_WARNING("embedding disabled", { |
|
{"params.embedding", params.embedding}, |
|
}); |
|
res.result_json = json |
|
{ |
|
{"embedding", std::vector<float>(n_embd, 0.0f)}, |
|
}; |
|
} |
|
else |
|
{ |
|
const float *data = llama_get_embeddings(ctx); |
|
std::vector<float> embedding(data, data + n_embd); |
|
res.result_json = json |
|
{ |
|
{"embedding", embedding }, |
|
}; |
|
} |
|
queue_results.send(res); |
|
} |
|
|
|
void request_completion(int task_id, json data, bool infill, bool embedding, int multitask_id) |
|
{ |
|
task_server task; |
|
task.id = task_id; |
|
task.target_id = 0; |
|
task.data = std::move(data); |
|
task.infill_mode = infill; |
|
task.embedding_mode = embedding; |
|
task.type = TASK_TYPE_COMPLETION; |
|
task.multitask_id = multitask_id; |
|
|
|
|
|
|
|
|
|
if (task.data.count("prompt") != 0 && task.data.at("prompt").size() > 1) { |
|
bool numbers = false; |
|
for (const auto& e : task.data.at("prompt")) { |
|
if (e.is_number()) { |
|
numbers = true; |
|
break; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
if (numbers) { |
|
queue_tasks.post(task); |
|
} else { |
|
split_multiprompt_task(task_id, task); |
|
} |
|
} else { |
|
queue_tasks.post(task); |
|
} |
|
} |
|
|
|
|
|
bool ingest_images(llama_client_slot &slot, int n_batch) |
|
{ |
|
int image_idx = 0; |
|
|
|
while (image_idx < (int) slot.images.size()) |
|
{ |
|
slot_image &img = slot.images[image_idx]; |
|
|
|
|
|
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) |
|
{ |
|
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); |
|
llama_batch batch_view = { |
|
n_tokens, |
|
batch.token + i, |
|
nullptr, |
|
batch.pos + i, |
|
batch.n_seq_id + i, |
|
batch.seq_id + i, |
|
batch.logits + i, |
|
0, 0, 0, |
|
}; |
|
if (llama_decode(ctx, batch_view)) |
|
{ |
|
LOG_TEE("%s : failed to eval\n", __func__); |
|
return false; |
|
} |
|
} |
|
|
|
|
|
for (int i = 0; i < img.image_tokens; i += n_batch) |
|
{ |
|
int n_eval = img.image_tokens - i; |
|
if (n_eval > n_batch) |
|
{ |
|
n_eval = n_batch; |
|
} |
|
|
|
const int n_embd = llama_n_embd(model); |
|
llama_batch batch_img = { n_eval, nullptr, (img.image_embedding + i * n_embd), nullptr, nullptr, nullptr, nullptr, slot.n_past, 1, 0, }; |
|
if (llama_decode(ctx, batch_img)) |
|
{ |
|
LOG_TEE("%s : failed to eval image\n", __func__); |
|
return false; |
|
} |
|
slot.n_past += n_eval; |
|
} |
|
image_idx++; |
|
|
|
llama_batch_clear(batch); |
|
|
|
|
|
const auto json_prompt = (image_idx >= (int) slot.images.size()) ? |
|
slot.params.input_suffix : |
|
(json)(slot.images[image_idx].prefix_prompt); |
|
|
|
std::vector<llama_token> append_tokens = tokenize(json_prompt, false); |
|
for (int i = 0; i < (int) append_tokens.size(); ++i) |
|
{ |
|
llama_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true); |
|
slot.n_past += 1; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
void request_cancel(int task_id) |
|
{ |
|
task_server task; |
|
task.type = TASK_TYPE_CANCEL; |
|
task.target_id = task_id; |
|
queue_tasks.post(task); |
|
} |
|
|
|
void split_multiprompt_task(int multitask_id, task_server& multiprompt_task) |
|
{ |
|
int prompt_count = multiprompt_task.data.at("prompt").size(); |
|
if (prompt_count <= 1) { |
|
send_error(multiprompt_task, "error while handling multiple prompts"); |
|
return; |
|
} |
|
|
|
|
|
std::vector<int> subtask_ids(prompt_count); |
|
for (int i = 0; i < prompt_count; i++) |
|
{ |
|
subtask_ids[i] = queue_tasks.get_new_id(); |
|
} |
|
|
|
|
|
queue_tasks.add_multitask(multitask_id, subtask_ids); |
|
|
|
|
|
for (int i = 0; i < prompt_count; i++) |
|
{ |
|
json subtask_data = multiprompt_task.data; |
|
subtask_data["prompt"] = subtask_data["prompt"][i]; |
|
|
|
|
|
request_completion(subtask_ids[i], subtask_data, multiprompt_task.infill_mode, multiprompt_task.embedding_mode, multitask_id); |
|
} |
|
} |
|
|
|
void process_single_task(task_server& task) |
|
{ |
|
switch (task.type) |
|
{ |
|
case TASK_TYPE_COMPLETION: { |
|
llama_client_slot *slot = get_slot(json_value(task.data, "slot_id", -1)); |
|
if (slot == nullptr) |
|
{ |
|
|
|
LOG_VERBOSE("no slot is available", {{"task_id", task.id}}); |
|
queue_tasks.defer(task); |
|
break; |
|
} |
|
|
|
if (task.data.contains("system_prompt")) |
|
{ |
|
if (!all_slots_are_idle) { |
|
send_error(task, "system prompt can only be updated when all slots are idle"); |
|
break; |
|
} |
|
process_system_prompt_data(task.data["system_prompt"]); |
|
|
|
|
|
for (llama_client_slot &slot : slots) |
|
{ |
|
slot.cache_tokens.clear(); |
|
slot.n_past = 0; |
|
slot.n_past_se = 0; |
|
} |
|
} |
|
|
|
slot->reset(); |
|
|
|
slot->infill = task.infill_mode; |
|
slot->embedding = task.embedding_mode; |
|
slot->task_id = task.id; |
|
slot->multitask_id = task.multitask_id; |
|
|
|
if (!launch_slot_with_data(slot, task.data)) |
|
{ |
|
|
|
send_error(task, "internal_error"); |
|
break; |
|
} |
|
} break; |
|
case TASK_TYPE_CANCEL: { |
|
for (auto & slot : slots) |
|
{ |
|
if (slot.task_id == task.target_id) |
|
{ |
|
slot.release(); |
|
break; |
|
} |
|
} |
|
} break; |
|
case TASK_TYPE_NEXT_RESPONSE: { |
|
|
|
} break; |
|
} |
|
} |
|
|
|
void on_finish_multitask(task_multi& multitask) |
|
{ |
|
|
|
task_result result; |
|
result.id = multitask.id; |
|
result.stop = true; |
|
result.error = false; |
|
|
|
|
|
std::vector<json> result_jsons; |
|
for (auto& subres : multitask.results) |
|
{ |
|
result_jsons.push_back(subres.result_json); |
|
result.error = result.error && subres.error; |
|
} |
|
result.result_json = json{ { "results", result_jsons } }; |
|
queue_results.send(result); |
|
} |
|
|
|
bool update_slots() { |
|
if (system_need_update) |
|
{ |
|
LOG_INFO("updating system prompt", {}); |
|
update_system_prompt(); |
|
} |
|
|
|
llama_batch_clear(batch); |
|
|
|
if (all_slots_are_idle) |
|
{ |
|
if (system_prompt.empty() && clean_kv_cache) |
|
{ |
|
LOG_INFO("all slots are idle and system prompt is empty, clear the KV cache", {}); |
|
kv_cache_clear(); |
|
} |
|
return true; |
|
} |
|
|
|
LOG_VERBOSE("posting NEXT_RESPONSE", {}); |
|
task_server task; |
|
task.type = TASK_TYPE_NEXT_RESPONSE; |
|
task.target_id = -1; |
|
queue_tasks.post(task); |
|
|
|
for (llama_client_slot &slot : slots) |
|
{ |
|
if (slot.ga_n == 1) |
|
{ |
|
if (slot.is_processing() && system_tokens.size() + slot.cache_tokens.size() >= (size_t) slot.n_ctx) |
|
{ |
|
|
|
|
|
|
|
|
|
slot.release(); |
|
send_final_response(slot); |
|
slot.cache_tokens.clear(); |
|
slot.n_past = 0; |
|
slot.truncated = false; |
|
slot.has_next_token = true; |
|
LOG_TEE("Context exhausted. Slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size()); |
|
|
|
continue; |
|
|
|
} |
|
} |
|
} |
|
|
|
|
|
LOG_VERBOSE("decoding ongoing sequences", {}); |
|
for (auto & slot : slots) |
|
{ |
|
|
|
if (slot.command == RELEASE) |
|
{ |
|
slot.state = IDLE; |
|
slot.command = NONE; |
|
slot.t_last_used = ggml_time_us(); |
|
|
|
LOG_INFO("slot released", { |
|
{"slot_id", slot.id}, |
|
{"task_id", slot.task_id}, |
|
{"n_ctx", n_ctx}, |
|
{"n_past", slot.n_past}, |
|
{"n_system_tokens", system_tokens.size()}, |
|
{"n_cache_tokens", slot.cache_tokens.size()}, |
|
{"truncated", slot.truncated} |
|
}); |
|
queue_tasks.notify_slot_changed(); |
|
|
|
continue; |
|
} |
|
|
|
if (slot.state == IDLE) |
|
{ |
|
continue; |
|
} |
|
|
|
slot.i_batch = batch.n_tokens; |
|
|
|
const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past; |
|
|
|
|
|
|
|
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true); |
|
slot.n_past += 1; |
|
} |
|
|
|
|
|
int32_t n_batch = params.n_batch; |
|
|
|
|
|
if (params.cont_batching || batch.n_tokens == 0) |
|
{ |
|
for (auto & slot : slots) |
|
{ |
|
const bool has_prompt = slot.prompt.is_array() || (slot.prompt.is_string() && !slot.prompt.get<std::string>().empty()) || !slot.images.empty(); |
|
|
|
|
|
|
|
if (slot.state == IDLE && slot.command == LOAD_PROMPT && !has_prompt && !slot.infill) |
|
{ |
|
slot.release(); |
|
slot.print_timings(); |
|
send_final_response(slot); |
|
continue; |
|
} |
|
|
|
|
|
if (slot.state == IDLE && slot.command == LOAD_PROMPT) |
|
{ |
|
slot.state = PROCESSING; |
|
slot.command = NONE; |
|
std::vector<llama_token> prompt_tokens; |
|
slot.t_start_process_prompt = ggml_time_us(); |
|
slot.t_start_genereration = 0; |
|
|
|
if (slot.infill) |
|
{ |
|
bool suff_rm_leading_spc = true; |
|
if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) |
|
{ |
|
params.input_suffix.erase(0, 1); |
|
suff_rm_leading_spc = false; |
|
} |
|
auto prefix_tokens = tokenize(slot.params.input_prefix, false); |
|
auto suffix_tokens = tokenize(slot.params.input_suffix, false); |
|
|
|
const int space_token = 29871; |
|
if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) { |
|
suffix_tokens.erase(suffix_tokens.begin()); |
|
} |
|
|
|
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model)); |
|
prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); |
|
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model)); |
|
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end()); |
|
prefix_tokens.push_back(llama_token_middle(model)); |
|
prompt_tokens = prefix_tokens; |
|
} |
|
else |
|
{ |
|
prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); |
|
} |
|
|
|
slot.num_prompt_tokens = prompt_tokens.size(); |
|
|
|
if (slot.params.n_keep < 0) |
|
{ |
|
slot.params.n_keep = slot.num_prompt_tokens; |
|
} |
|
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep); |
|
|
|
|
|
if (slot.num_prompt_tokens >= slot.n_ctx) |
|
{ |
|
const int n_left = slot.n_ctx - slot.params.n_keep; |
|
const int n_block_size = n_left / 2; |
|
const int erased_blocks = (slot.num_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size; |
|
|
|
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep); |
|
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end()); |
|
|
|
LOG_VERBOSE("input truncated", { |
|
{"n_ctx", slot.n_ctx}, |
|
{"n_keep", slot.params.n_keep}, |
|
{"n_left", n_left}, |
|
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())}, |
|
}); |
|
slot.truncated = true; |
|
prompt_tokens = new_tokens; |
|
|
|
slot.num_prompt_tokens = prompt_tokens.size(); |
|
GGML_ASSERT(slot.num_prompt_tokens < slot.n_ctx); |
|
} |
|
|
|
if (!slot.params.cache_prompt) |
|
{ |
|
llama_sampling_reset(slot.ctx_sampling); |
|
|
|
slot.n_past = 0; |
|
slot.n_past_se = 0; |
|
slot.ga_i = 0; |
|
slot.num_prompt_tokens_processed = slot.num_prompt_tokens; |
|
} |
|
else |
|
{ |
|
|
|
for (auto &token : prompt_tokens) |
|
{ |
|
llama_sampling_accept(slot.ctx_sampling, ctx, token, false); |
|
} |
|
|
|
slot.n_past = common_part(slot.cache_tokens, prompt_tokens); |
|
|
|
|
|
|
|
if (slot.n_past > 0 && slot.n_past == (int32_t) slot.cache_tokens.size()) |
|
{ |
|
slot.n_past -= 1; |
|
} |
|
|
|
slot.num_prompt_tokens_processed = slot.num_prompt_tokens - slot.n_past; |
|
|
|
if (slot.ga_n != 1) |
|
{ |
|
int ga_i = 0; |
|
int32_t ga_n = slot.ga_n; |
|
int32_t ga_w = slot.ga_w; |
|
int32_t slot_npast = 0; |
|
for (int k = 0; k < slot.n_past; ++k) |
|
{ |
|
while (slot_npast >= ga_i + ga_w) { |
|
const int bd = (ga_w/ga_n)*(ga_n - 1); |
|
slot_npast -= bd; |
|
ga_i += ga_w/ga_n; |
|
} |
|
slot_npast++; |
|
} |
|
slot.n_past_se = slot_npast; |
|
slot.ga_i = ga_i; |
|
} |
|
|
|
LOG_INFO("slot progression", { |
|
{ "slot_id", slot.id }, |
|
{ "task_id", slot.task_id }, |
|
{ "n_past", slot.n_past }, |
|
{ "num_prompt_tokens_processed", slot.num_prompt_tokens_processed } |
|
}); |
|
} |
|
|
|
slot.cache_tokens = prompt_tokens; |
|
|
|
if (slot.n_past == slot.num_prompt_tokens && slot.n_past > 0) |
|
{ |
|
|
|
LOG_INFO("we have to evaluate at least 1 token to generate logits", { |
|
{ "slot_id", slot.id }, |
|
{ "task_id", slot.task_id } |
|
}); |
|
slot.n_past--; |
|
if (slot.ga_i > 0) |
|
{ |
|
slot.n_past_se--; |
|
} |
|
} |
|
|
|
int p0 = (int) system_tokens.size() + slot.n_past; |
|
LOG_INFO("kv cache rm [p0, end)", { |
|
{ "slot_id", slot.id }, |
|
{ "task_id", slot.task_id }, |
|
{ "p0", p0 } |
|
}); |
|
llama_kv_cache_seq_rm(ctx, slot.id, p0, -1); |
|
|
|
LOG_VERBOSE("prompt ingested", { |
|
{"n_past", slot.n_past}, |
|
{"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)}, |
|
{"to_eval", tokens_to_str(ctx, slot.cache_tokens.cbegin() + slot.n_past, slot.cache_tokens.cend())}, |
|
}); |
|
|
|
const bool has_images = process_images(slot); |
|
|
|
|
|
std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens; |
|
|
|
int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past; |
|
|
|
int32_t ga_i = slot.ga_i; |
|
int32_t ga_n = slot.ga_n; |
|
int32_t ga_w = slot.ga_w; |
|
|
|
for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past) |
|
{ |
|
if (slot.ga_n != 1) |
|
{ |
|
while (slot_npast >= ga_i + ga_w) { |
|
const int bd = (ga_w/ga_n)*(ga_n - 1); |
|
slot_npast -= bd; |
|
ga_i += ga_w/ga_n; |
|
} |
|
} |
|
llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, {slot.id }, false); |
|
slot_npast++; |
|
} |
|
|
|
if (has_images && !ingest_images(slot, n_batch)) |
|
{ |
|
LOG_ERROR("failed processing images", { |
|
"slot_id", slot.id, |
|
"task_id", slot.task_id, |
|
}); |
|
|
|
|
|
|
|
return false; |
|
} |
|
|
|
|
|
if (batch.n_tokens > 0) |
|
{ |
|
batch.logits[batch.n_tokens - 1] = true; |
|
} |
|
|
|
slot.n_decoded = 0; |
|
slot.i_batch = batch.n_tokens - 1; |
|
} |
|
} |
|
} |
|
|
|
if (batch.n_tokens == 0) |
|
{ |
|
all_slots_are_idle = true; |
|
return true; |
|
} |
|
|
|
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) |
|
{ |
|
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); |
|
|
|
for (auto & slot : slots) |
|
{ |
|
if (slot.ga_n != 1) |
|
{ |
|
|
|
while (slot.n_past_se >= slot.ga_i + slot.ga_w) |
|
{ |
|
const int ib = (slot.ga_n * slot.ga_i) / slot.ga_w; |
|
const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1); |
|
const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w; |
|
|
|
LOG_TEE("\n"); |
|
LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd); |
|
LOG_TEE("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n); |
|
LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd); |
|
|
|
llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd); |
|
llama_kv_cache_seq_div(ctx, slot.id, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w,slot.ga_n); |
|
llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i + ib * bd + slot.ga_w,slot.n_past_se + ib * bd, dd); |
|
|
|
slot.n_past_se -= bd; |
|
|
|
slot.ga_i += slot.ga_w / slot.ga_n; |
|
|
|
LOG_TEE("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i); |
|
} |
|
slot.n_past_se += n_tokens; |
|
} |
|
} |
|
|
|
llama_batch batch_view = |
|
{ |
|
n_tokens, |
|
batch.token + i, |
|
nullptr, |
|
batch.pos + i, |
|
batch.n_seq_id + i, |
|
batch.seq_id + i, |
|
batch.logits + i, |
|
0, 0, 0, |
|
}; |
|
|
|
const int ret = llama_decode(ctx, batch_view); |
|
|
|
if (ret != 0) |
|
{ |
|
if (n_batch == 1 || ret < 0) |
|
{ |
|
|
|
LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret); |
|
return false; |
|
} |
|
|
|
LOG_TEE("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2); |
|
|
|
|
|
n_batch /= 2; |
|
i -= n_batch; |
|
continue; |
|
} |
|
|
|
for (auto & slot : slots) |
|
{ |
|
if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) |
|
{ |
|
continue; |
|
} |
|
|
|
|
|
if (slot.embedding) |
|
{ |
|
send_embedding(slot); |
|
slot.release(); |
|
slot.i_batch = -1; |
|
continue; |
|
} |
|
|
|
completion_token_output result; |
|
const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i); |
|
|
|
llama_sampling_accept(slot.ctx_sampling, ctx, id, true); |
|
|
|
slot.n_decoded += 1; |
|
if (slot.n_decoded == 1) |
|
{ |
|
slot.t_start_genereration = ggml_time_us(); |
|
slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3; |
|
metrics.on_prompt_eval(slot); |
|
} |
|
|
|
llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false }; |
|
result.tok = id; |
|
|
|
const int32_t n_probs = slot.sparams.n_probs; |
|
if (slot.sparams.temp <= 0 && n_probs > 0) |
|
{ |
|
|
|
llama_sample_softmax(ctx, &cur_p); |
|
} |
|
|
|
for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i) |
|
{ |
|
result.probs.push_back({cur_p.data[i].id, cur_p.data[i].p}); |
|
} |
|
|
|
if (!process_token(result, slot)) |
|
{ |
|
slot.release(); |
|
slot.print_timings(); |
|
send_final_response(slot); |
|
metrics.on_prediction(slot); |
|
} |
|
|
|
slot.i_batch = -1; |
|
} |
|
} |
|
|
|
LOG_VERBOSE("slots updated", {}); |
|
return true; |
|
} |
|
|
|
void run_on_all_tasks_finished() { |
|
update_slots(); |
|
} |
|
}; |
|
|
|
|
|
static json format_partial_response( |
|
llama_server_context &llama, llama_client_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs |
|
) { |
|
json res = json |
|
{ |
|
{"content", content }, |
|
{"stop", false}, |
|
{"slot_id", slot->id }, |
|
{"multimodal", llama.multimodal } |
|
}; |
|
|
|
if (slot->sparams.n_probs > 0) |
|
{ |
|
res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs); |
|
} |
|
|
|
return res; |
|
} |
|
|
|
struct token_translator |
|
{ |
|
llama_context * ctx; |
|
std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); } |
|
std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); } |
|
}; |
|
|
|
static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, llama_client_slot *slot) |
|
{ |
|
auto & gtps = slot->generated_token_probs; |
|
auto translator = token_translator{llama.ctx}; |
|
auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); }; |
|
const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen); |
|
if (slot->generated_text.capacity() < slot->generated_text.size() + len) |
|
{ |
|
slot->generated_text.reserve(slot->generated_text.size() + len); |
|
} |
|
for (const completion_token_output & cto : gtps) |
|
{ |
|
slot->generated_text += translator(cto); |
|
} |
|
} |
|
|
|
std::function<void(int)> shutdown_handler; |
|
inline void signal_handler(int signal) { shutdown_handler(signal); } |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool loaded_model; |
|
|
|
|
|
llama_server_context llama; |
|
|
|
static void start_llama_server() { |
|
|
|
while (!loaded_model) { |
|
std::this_thread::sleep_for(std::chrono::milliseconds(100)); |
|
} |
|
|
|
llama.queue_tasks.on_new_task(std::bind( |
|
&llama_server_context::process_single_task, &llama, std::placeholders::_1)); |
|
llama.queue_tasks.on_finish_multitask(std::bind( |
|
&llama_server_context::on_finish_multitask, &llama, std::placeholders::_1)); |
|
llama.queue_tasks.on_all_tasks_finished(std::bind( |
|
&llama_server_context::run_on_all_tasks_finished, &llama)); |
|
llama.queue_results.on_multitask_update(std::bind( |
|
&llama_server_queue::update_multitask, |
|
&llama.queue_tasks, |
|
std::placeholders::_1, |
|
std::placeholders::_2, |
|
std::placeholders::_3 |
|
)); |
|
llama.queue_tasks.start_loop(); |
|
} |
|
|
|
json parse_options(bool streaming, const backend::PredictOptions* predict, llama_server_context &llama) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
json data; |
|
data["stream"] = streaming; |
|
data["cache_prompt"] = predict->promptcacheall(); |
|
data["n_predict"] = predict->tokens() == 0 ? -1 : predict->tokens(); |
|
data["top_k"] = predict->topk(); |
|
data["top_p"] = predict->topp(); |
|
data["tfs_z"] = predict->tailfreesamplingz(); |
|
data["typical_p"] = predict->typicalp(); |
|
data["temperature"] = predict->temperature(); |
|
data["repeat_last_n"] = predict->repeat(); |
|
data["repeat_penalty"] = predict->penalty(); |
|
data["frequency_penalty"] = predict->frequencypenalty(); |
|
data["presence_penalty"] = predict->presencepenalty(); |
|
data["mirostat"] = predict->mirostat(); |
|
data["mirostat_tau"] = predict->mirostattau(); |
|
data["mirostat_eta"] = predict->mirostateta(); |
|
data["penalize_nl"] = predict->penalizenl(); |
|
data["n_keep"] = predict->nkeep(); |
|
data["seed"] = predict->seed(); |
|
data["grammar"] = predict->grammar(); |
|
data["prompt"] = predict->prompt(); |
|
data["ignore_eos"] = predict->ignoreeos(); |
|
data["embeddings"] = predict->embeddings(); |
|
|
|
|
|
|
|
for (int i = 0; i < predict->images_size(); i++) { |
|
data["image_data"].push_back(json |
|
{ |
|
{"id", i}, |
|
{"data", predict->images(i)}, |
|
}); |
|
} |
|
|
|
data["stop"] = predict->stopprompts(); |
|
|
|
|
|
|
|
return data; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static void params_parse(const backend::ModelOptions* request, |
|
gpt_params & params) { |
|
|
|
|
|
|
|
params.model = request->modelfile(); |
|
if (!request->mmproj().empty()) { |
|
|
|
std::string model_dir = params.model.substr(0, params.model.find_last_of("/\\")); |
|
params.mmproj = model_dir + "/"+ request->mmproj(); |
|
} |
|
|
|
params.model_alias = request->modelfile(); |
|
params.n_ctx = request->contextsize(); |
|
|
|
params.n_threads = request->threads(); |
|
params.n_gpu_layers = request->ngpulayers(); |
|
params.n_batch = request->nbatch(); |
|
|
|
|
|
const char *env_parallel = std::getenv("LLAMACPP_PARALLEL"); |
|
if (env_parallel != NULL) { |
|
params.n_parallel = std::stoi(env_parallel); |
|
params.cont_batching = true; |
|
} else { |
|
params.n_parallel = 1; |
|
} |
|
|
|
const char *llama_grpc_servers = std::getenv("LLAMACPP_GRPC_SERVERS"); |
|
if (llama_grpc_servers != NULL) { |
|
params.rpc_servers = std::string(llama_grpc_servers); |
|
} |
|
|
|
|
|
|
|
if (!request->tensorsplit().empty()) { |
|
std::string arg_next = request->tensorsplit(); |
|
|
|
|
|
const std::regex regex{ R"([,/]+)" }; |
|
std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 }; |
|
std::vector<std::string> split_arg{ it, {} }; |
|
|
|
GGML_ASSERT(split_arg.size() <= llama_max_devices()); |
|
|
|
for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device) { |
|
if (i_device < split_arg.size()) { |
|
params.tensor_split[i_device] = std::stof(split_arg[i_device]); |
|
} |
|
else { |
|
params.tensor_split[i_device] = 0.0f; |
|
} |
|
} |
|
} |
|
|
|
if (!request->maingpu().empty()) { |
|
params.main_gpu = std::stoi(request->maingpu()); |
|
} |
|
if (!request->loraadapter().empty() && !request->lorabase().empty()) { |
|
float scale_factor = 1.0f; |
|
if (request->lorascale() != 0.0f) { |
|
scale_factor = request->lorascale(); |
|
} |
|
|
|
std::string model_dir = params.model.substr(0, params.model.find_last_of("/\\")); |
|
params.lora_adapters.push_back({ model_dir + "/"+request->loraadapter(), scale_factor }); |
|
} |
|
params.use_mlock = request->mlock(); |
|
params.use_mmap = request->mmap(); |
|
params.flash_attn = request->flashattention(); |
|
params.no_kv_offload = request->nokvoffload(); |
|
|
|
params.embedding = request->embeddings(); |
|
|
|
if (request->ropescaling() == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; } |
|
else if (request->ropescaling() == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; } |
|
else { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; } |
|
if ( request->yarnextfactor() != 0.0f ) { |
|
params.yarn_ext_factor = request->yarnextfactor(); |
|
} |
|
if ( request->yarnattnfactor() != 0.0f ) { |
|
params.yarn_attn_factor = request->yarnattnfactor(); |
|
} |
|
if ( request->yarnbetafast() != 0.0f ) { |
|
params.yarn_beta_fast = request->yarnbetafast(); |
|
} |
|
if ( request->yarnbetaslow() != 0.0f ) { |
|
params.yarn_beta_slow = request->yarnbetaslow(); |
|
} |
|
if ( request->ropefreqbase() != 0.0f ) { |
|
params.rope_freq_base = request->ropefreqbase(); |
|
} |
|
if ( request->ropefreqscale() != 0.0f ) { |
|
params.rope_freq_scale = request->ropefreqscale(); |
|
} |
|
} |
|
|
|
|
|
|
|
class BackendServiceImpl final : public backend::Backend::Service { |
|
public: |
|
grpc::Status Health(ServerContext* context, const backend::HealthMessage* request, backend::Reply* reply) { |
|
|
|
reply->set_message("OK"); |
|
return Status::OK; |
|
} |
|
|
|
grpc::Status LoadModel(ServerContext* context, const backend::ModelOptions* request, backend::Result* result) { |
|
|
|
gpt_params params; |
|
params_parse(request, params); |
|
|
|
llama_backend_init(); |
|
llama_numa_init(params.numa); |
|
|
|
|
|
if (!llama.load_model(params)) |
|
{ |
|
result->set_message("Failed loading model"); |
|
result->set_success(false); |
|
return Status::CANCELLED; |
|
} |
|
llama.initialize(); |
|
result->set_message("Loading succeeded"); |
|
result->set_success(true); |
|
loaded_model = true; |
|
return Status::OK; |
|
} |
|
grpc::Status PredictStream(grpc::ServerContext* context, const backend::PredictOptions* request, grpc::ServerWriter<backend::Reply>* writer) override { |
|
json data = parse_options(true, request, llama); |
|
const int task_id = llama.queue_tasks.get_new_id(); |
|
llama.queue_results.add_waiting_task_id(task_id); |
|
llama.request_completion(task_id, data, false, false, -1); |
|
while (true) |
|
{ |
|
task_result result = llama.queue_results.recv(task_id); |
|
if (!result.error) { |
|
const std::string str = |
|
"data: " + |
|
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) + |
|
"\n\n"; |
|
LOG_VERBOSE("data stream", { |
|
{ "to_send", str } |
|
}); |
|
|
|
backend::Reply reply; |
|
|
|
std::string completion_text = result.result_json.value("content", ""); |
|
|
|
reply.set_message(completion_text); |
|
int32_t tokens_predicted = result.result_json.value("tokens_predicted", 0); |
|
reply.set_tokens(tokens_predicted); |
|
int32_t tokens_evaluated = result.result_json.value("tokens_evaluated", 0); |
|
reply.set_prompt_tokens(tokens_evaluated); |
|
|
|
|
|
writer->Write(reply); |
|
|
|
if (result.stop) { |
|
break; |
|
} |
|
} else { |
|
break; |
|
} |
|
} |
|
|
|
return grpc::Status::OK; |
|
} |
|
|
|
|
|
grpc::Status Predict(ServerContext* context, const backend::PredictOptions* request, backend::Reply* reply) { |
|
json data = parse_options(false, request, llama); |
|
const int task_id = llama.queue_tasks.get_new_id(); |
|
llama.queue_results.add_waiting_task_id(task_id); |
|
llama.request_completion(task_id, data, false, false, -1); |
|
std::string completion_text; |
|
task_result result = llama.queue_results.recv(task_id); |
|
if (!result.error && result.stop) { |
|
completion_text = result.result_json.value("content", ""); |
|
int32_t tokens_predicted = result.result_json.value("tokens_predicted", 0); |
|
int32_t tokens_evaluated = result.result_json.value("tokens_evaluated", 0); |
|
reply->set_prompt_tokens(tokens_evaluated); |
|
reply->set_tokens(tokens_predicted); |
|
reply->set_message(completion_text); |
|
} |
|
else |
|
{ |
|
return grpc::Status::OK; |
|
} |
|
|
|
return grpc::Status::OK; |
|
} |
|
|
|
|
|
grpc::Status Embedding(ServerContext* context, const backend::PredictOptions* request, backend::EmbeddingResult* embeddingResult) { |
|
json data = parse_options(false, request, llama); |
|
const int task_id = llama.queue_tasks.get_new_id(); |
|
llama.queue_results.add_waiting_task_id(task_id); |
|
llama.request_completion(task_id, { {"prompt", data["embeddings"]}, { "n_predict", 0}, {"image_data", ""} }, false, true, -1); |
|
|
|
task_result result = llama.queue_results.recv(task_id); |
|
|
|
llama.queue_results.remove_waiting_task_id(task_id); |
|
if (!result.error && result.stop) { |
|
std::vector<float> embeddings = result.result_json.value("embedding", std::vector<float>()); |
|
|
|
for (int i = 0; i < embeddings.size(); i++) { |
|
embeddingResult->add_embeddings(embeddings[i]); |
|
} |
|
} |
|
else |
|
{ |
|
return grpc::Status::OK; |
|
} |
|
|
|
return grpc::Status::OK; |
|
} |
|
}; |
|
|
|
void RunServer(const std::string& server_address) { |
|
BackendServiceImpl service; |
|
|
|
ServerBuilder builder; |
|
builder.AddListeningPort(server_address, grpc::InsecureServerCredentials()); |
|
builder.RegisterService(&service); |
|
|
|
std::unique_ptr<Server> server(builder.BuildAndStart()); |
|
std::cout << "Server listening on " << server_address << std::endl; |
|
server->Wait(); |
|
} |
|
|
|
int main(int argc, char** argv) { |
|
std::string server_address("localhost:50051"); |
|
|
|
|
|
struct option long_options[] = { |
|
{"addr", required_argument, nullptr, 'a'}, |
|
{nullptr, 0, nullptr, 0} |
|
}; |
|
|
|
|
|
int option; |
|
int option_index = 0; |
|
while ((option = getopt_long(argc, argv, "a:", long_options, &option_index)) != -1) { |
|
switch (option) { |
|
case 'a': |
|
server_address = optarg; |
|
break; |
|
default: |
|
std::cerr << "Usage: " << argv[0] << " [--addr=<address>] or [-a <address>]" << std::endl; |
|
return 1; |
|
} |
|
} |
|
|
|
|
|
std::thread t([&]() |
|
{ |
|
RunServer(server_address); |
|
return 0; |
|
}); |
|
|
|
|
|
|
|
start_llama_server(); |
|
std::cout << "stopping" << std::endl; |
|
|
|
t.join(); |
|
|
|
llama_backend_free(); |
|
return 0; |
|
} |
|
|