CV-Space / app.py
edm-research's picture
Initial commit
f211596
import gradio as gr
import spaces
import torch
from PIL import Image
from transformers import pipeline
import matplotlib.pyplot as plt
import io
model_pipeline = pipeline("object-detection", model="edm-research/detr-resnet-50-dc5-fashionpedia-finetuned")
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
def get_output_figure(pil_img, results, threshold):
plt.figure(figsize=(16, 10))
plt.imshow(pil_img)
ax = plt.gca()
colors = COLORS * 100
for result in results:
score = result['score']
label = result['label']
box = list(result['box'].values())
if score > threshold:
c = COLORS[hash(label) % len(COLORS)]
ax.add_patch(plt.Rectangle((box[0], box[1]), box[2] - box[0], box[3] - box[1], fill=False, color=c, linewidth=3))
text = f'{label}: {score:0.2f}'
ax.text(box[0], box[1], text, fontsize=15,
bbox=dict(facecolor='yellow', alpha=0.5))
plt.axis('off')
return plt.gcf()
@spaces.GPU
def detect(image):
results = model_pipeline(image)
print(results)
output_figure = get_output_figure(image, results, threshold=0.7)
buf = io.BytesIO()
output_figure.savefig(buf, bbox_inches='tight')
buf.seek(0)
output_pil_img = Image.open(buf)
return output_pil_img
with gr.Blocks() as demo:
gr.Markdown("# Object detection with DETR fine tuned on detection-datasets/fashionpedia")
gr.Markdown(
"""
This application uses a fine tuned DETR (DEtection TRansformers) to detect objects on images.
This version was trained using detection-datasets/fashionpedia dataset.
You can load an image and see the predictions for the objects detected.
"""
)
gr.Interface(
fn=detect,
inputs=gr.Image(label="Input image", type="pil"),
outputs=[
gr.Image(label="Output prediction", type="pil")
]
)
demo.launch(show_error=True)