File size: 1,546 Bytes
3ab6d8e
 
 
 
 
 
 
 
 
 
 
 
 
 
06ca50d
 
3ab6d8e
 
937a410
06ca50d
3ab6d8e
 
06ca50d
 
3ab6d8e
 
06ca50d
 
 
 
3ab6d8e
 
06ca50d
3ab6d8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from dataclasses import dataclass
from pathlib import Path
import torch

@dataclass
class TrainingConfig:
    """Configuration for model training"""
    
    # Model parameters
    model_name: str = "microsoft/deberta-v3-large"
    dropout: float = 0.1
    
    # Training parameters
    num_epochs: int = 5
    learning_rate: float = 1e-5  # Reduced from 2e-5
    warmup_ratio: float = 0.2    # Increased from 0.1
    weight_decay: float = 0.01
    max_grad_norm: float = 1.0
    gradient_accumulation_steps: int = 4
    fp16: bool = True
    
    # Data parameters
    max_length: int = 256
    batch_size: int = 4
    train_ratio: float = 0.8
    
    # Loss parameters
    pos_weight_multiplier: float = 5.0  # Weight multiplier for positive classes
    label_smoothing: float = 0.1        # Label smoothing factor
    
    # Output parameters
    output_dir: Path = Path("outputs")
    save_steps: int = 50
    eval_steps: int = 50
    
    # Device
    device: str = "cuda" if torch.cuda.is_available() else "cpu"
    
    def __post_init__(self):
        """Create output directory if it doesn't exist"""
        self.output_dir.mkdir(parents=True, exist_ok=True)

# Test code
if __name__ == "__main__":
    # Create default config
    default_config = TrainingConfig()
    
    print("\n=== Default Configuration ===")
    print(f"Model name: {default_config.model_name}")
    print(f"Batch size: {default_config.batch_size}")
    print(f"Learning rate: {default_config.learning_rate}")
    print(f"Device: {default_config.device}")