Spaces:
Runtime error
Runtime error
File size: 13,410 Bytes
3ab6d8e 937a410 3ab6d8e 06ca50d 3ab6d8e 937a410 3ab6d8e 937a410 3ab6d8e 937a410 3ab6d8e 937a410 3ab6d8e 660777d 937a410 3ab6d8e 937a410 3ab6d8e 937a410 3ab6d8e 06ca50d 3ab6d8e 06ca50d 3ab6d8e 06ca50d 3ab6d8e 06ca50d 937a410 3ab6d8e 937a410 06ca50d 3ab6d8e 937a410 3ab6d8e 06ca50d 61d58d1 06ca50d 61d58d1 06ca50d 937a410 3ab6d8e 06ca50d 937a410 3ab6d8e 06ca50d 3ab6d8e 06ca50d 3ab6d8e 06ca50d 3ab6d8e 937a410 3ab6d8e 937a410 3ab6d8e 660777d 937a410 3ab6d8e 660777d 3ab6d8e 937a410 660777d 937a410 660777d 937a410 3ab6d8e 937a410 3ab6d8e 06ca50d 3ab6d8e 06ca50d 3ab6d8e 06ca50d 3ab6d8e 937a410 3ab6d8e 06ca50d 3ab6d8e 937a410 3ab6d8e 06ca50d 3ab6d8e 06ca50d 3ab6d8e 06ca50d 3ab6d8e 06ca50d 3ab6d8e 06ca50d 3ab6d8e 937a410 3ab6d8e 06ca50d 3ab6d8e 06ca50d 3ab6d8e 937a410 3ab6d8e 937a410 06ca50d 937a410 3ab6d8e 937a410 3ab6d8e 937a410 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import torch
from torch.utils.data import DataLoader
from transformers import get_linear_schedule_with_warmup
from tqdm import tqdm
import logging
from pathlib import Path
import numpy as np
from sklearn.metrics import f1_score, precision_score, recall_score
import json
from datetime import datetime
from torch.cuda.amp import autocast, GradScaler
class NarrativeTrainer:
"""Enhanced trainer with detailed metrics and optimizations"""
def __init__(
self,
model,
train_dataset,
val_dataset,
config,
):
# Setup basics
self.setup_logging()
self.logger = logging.getLogger(__name__)
# Store config first
self.config = config
# Setup device
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.logger.info(f"Using device: {self.device}")
# Clear GPU cache if using CUDA
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Initialize model and components
self.model = model.to(self.device)
self.train_dataset = train_dataset
self.val_dataset = val_dataset
# Initialize training state
self.current_epoch = 0
self.global_step = 0
self.best_val_f1 = 0.0
# Initialize mixed precision training (Fixed version)
if self.config.fp16:
self.scaler = torch.cuda.amp.GradScaler()
else:
self.scaler = None
# Setup training components
self.setup_training()
# Setup output directory
self.timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
self.output_dir = Path(config.output_dir) / self.timestamp
self.output_dir.mkdir(parents=True, exist_ok=True)
# Save config and initialize history
self.save_config()
self.history = {
'train_loss': [],
'val_loss': [],
'metrics': [],
'thresholds': []
}
def setup_logging(self):
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
def calculate_class_weights(self):
"""Calculate weights for imbalanced classes"""
pos_counts = self.train_dataset.labels.sum(dim=0)
neg_counts = len(self.train_dataset) - pos_counts
pos_weight = (neg_counts / pos_counts) * self.config.pos_weight_multiplier
return torch.clamp(pos_weight, min=1.0, max=50.0).to(self.device)
def setup_training(self):
"""Initialize training components with optimizations"""
# Create dataloaders
self.train_loader = DataLoader(
self.train_dataset,
batch_size=self.config.batch_size,
shuffle=True,
num_workers=4,
pin_memory=True
)
self.val_loader = DataLoader(
self.val_dataset,
batch_size=self.config.batch_size,
num_workers=4,
pin_memory=True
)
# Calculate class weights
pos_weight = self.calculate_class_weights()
# Setup loss function with class weights only
self.criterion = torch.nn.BCEWithLogitsLoss(
pos_weight=pos_weight
)
# Setup optimizer
self.optimizer = torch.optim.AdamW(
self.model.parameters(),
lr=self.config.learning_rate,
weight_decay=self.config.weight_decay
)
# Setup scheduler
num_update_steps_per_epoch = len(self.train_loader) // self.config.gradient_accumulation_steps
num_training_steps = num_update_steps_per_epoch * self.config.num_epochs
num_warmup_steps = int(num_training_steps * self.config.warmup_ratio)
self.scheduler = get_linear_schedule_with_warmup(
self.optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps
)
# Initialize thresholds
self.label_thresholds = torch.ones(self.train_dataset.get_num_labels()).to(self.device) * 0.5
def save_config(self):
config_dict = {k: str(v) for k, v in vars(self.config).items()}
config_path = self.output_dir / 'config.json'
with open(config_path, 'w') as f:
json.dump(config_dict, f, indent=4)
def find_optimal_thresholds(self, val_outputs, val_labels):
"""Find optimal threshold for each label"""
outputs = torch.sigmoid(val_outputs).cpu().numpy()
labels = val_labels.cpu().numpy()
thresholds = []
for i in range(labels.shape[1]):
best_f1 = 0
best_threshold = 0.5
if labels[:, i].sum() > 0: # Only if we have positive samples
for threshold in np.arange(0.1, 0.9, 0.05):
preds = (outputs[:, i] > threshold).astype(int)
f1 = f1_score(labels[:, i], preds)
if f1 > best_f1:
best_f1 = f1
best_threshold = threshold
thresholds.append(best_threshold)
return torch.tensor(thresholds).to(self.device)
def calculate_detailed_metrics(self, all_labels, all_preds, all_probs=None):
"""Calculate detailed metrics for model evaluation"""
metrics = {}
# Basic metrics
metrics['micro'] = {
'precision': precision_score(all_labels, all_preds, average='micro'),
'recall': recall_score(all_labels, all_preds, average='micro'),
'f1': f1_score(all_labels, all_preds, average='micro')
}
metrics['macro'] = {
'precision': precision_score(all_labels, all_preds, average='macro'),
'recall': recall_score(all_labels, all_preds, average='macro'),
'f1': f1_score(all_labels, all_preds, average='macro')
}
metrics['weighted'] = {
'precision': precision_score(all_labels, all_preds, average='weighted'),
'recall': recall_score(all_labels, all_preds, average='weighted'),
'f1': f1_score(all_labels, all_preds, average='weighted')
}
# Per-class metrics
per_class_metrics = {}
precisions = precision_score(all_labels, all_preds, average=None)
recalls = recall_score(all_labels, all_preds, average=None)
f1s = f1_score(all_labels, all_preds, average=None)
for i in range(len(f1s)):
per_class_metrics[f'class_{i}'] = {
'precision': float(precisions[i]),
'recall': float(recalls[i]),
'f1': float(f1s[i]),
'support': int(all_labels[:, i].sum())
}
metrics['per_class'] = per_class_metrics
return metrics
def train_epoch(self):
"""Train for one epoch with optimizations"""
self.model.train()
total_loss = 0
self.optimizer.zero_grad()
pbar = tqdm(enumerate(self.train_loader),
total=len(self.train_loader),
desc=f'Epoch {self.current_epoch + 1}/{self.config.num_epochs}')
for step, batch in pbar:
batch = {k: v.to(self.device, non_blocking=True) for k, v in batch.items()}
# Mixed precision training
with torch.cuda.amp.autocast(enabled=self.config.fp16):
outputs = self.model(
input_ids=batch['input_ids'],
attention_mask=batch['attention_mask'],
features=batch['features']
)
loss = self.criterion(outputs, batch['labels'])
loss = loss / self.config.gradient_accumulation_steps
# Backward pass with scaler if fp16 is enabled
if self.config.fp16:
self.scaler.scale(loss).backward()
else:
loss.backward()
if (step + 1) % self.config.gradient_accumulation_steps == 0:
if self.config.fp16:
self.scaler.unscale_(self.optimizer)
torch.nn.utils.clip_grad_norm_(
self.model.parameters(),
self.config.max_grad_norm
)
if self.config.fp16:
self.scaler.step(self.optimizer)
self.scaler.update()
else:
self.optimizer.step()
self.scheduler.step()
self.optimizer.zero_grad()
total_loss += loss.item() * self.config.gradient_accumulation_steps
avg_loss = total_loss / (step + 1)
pbar.set_postfix({'loss': f'{avg_loss:.4f}'})
self.global_step += 1
if self.global_step % self.config.eval_steps == 0:
self.evaluate()
if step % 10 == 0:
torch.cuda.empty_cache()
del outputs
del loss
return total_loss / len(self.train_loader)
@torch.no_grad()
def evaluate(self):
"""Evaluate model with detailed metrics"""
self.model.eval()
total_loss = 0
all_outputs, all_labels = [], []
for batch in tqdm(self.val_loader, desc="Evaluating"):
batch = {k: v.to(self.device, non_blocking=True) for k, v in batch.items()}
with autocast(enabled=self.config.fp16):
outputs = self.model(
input_ids=batch['input_ids'],
attention_mask=batch['attention_mask'],
features=batch['features']
)
loss = self.criterion(outputs, batch['labels'])
total_loss += loss.item()
all_outputs.append(outputs.cpu())
all_labels.append(batch['labels'].cpu())
del outputs
del loss
torch.cuda.empty_cache()
all_outputs = torch.cat(all_outputs, dim=0)
all_labels = torch.cat(all_labels, dim=0)
if self.global_step % (self.config.eval_steps * 2) == 0:
self.label_thresholds = self.find_optimal_thresholds(all_outputs, all_labels)
all_probs = torch.sigmoid(all_outputs).numpy()
all_preds = (all_probs > self.label_thresholds.cpu().unsqueeze(0).numpy())
all_labels = all_labels.numpy()
metrics = self.calculate_detailed_metrics(all_labels, all_preds, all_probs)
metrics['loss'] = total_loss / len(self.val_loader)
self.logger.info(f"Step {self.global_step} - Validation metrics:")
self.logger.info(f"Loss: {metrics['loss']:.4f}")
self.logger.info(f"Micro F1: {metrics['micro']['f1']:.4f}")
self.logger.info(f"Macro F1: {metrics['macro']['f1']:.4f}")
if metrics['micro']['f1'] > self.best_val_f1:
self.best_val_f1 = metrics['micro']['f1']
self.save_model('best_model.pt', metrics)
return metrics
def save_model(self, filename: str, metrics: dict = None):
save_path = self.output_dir / filename
torch.save({
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'scheduler_state_dict': self.scheduler.state_dict(),
'scaler_state_dict': self.scaler.state_dict(),
'epoch': self.current_epoch,
'global_step': self.global_step,
'best_val_f1': self.best_val_f1,
'metrics': metrics,
'thresholds': self.label_thresholds
}, save_path)
self.logger.info(f"Model saved to {save_path}")
def train(self):
"""Run complete training loop"""
self.logger.info("Starting training...")
try:
for epoch in range(self.config.num_epochs):
self.current_epoch = epoch
self.logger.info(f"Starting epoch {epoch + 1}/{self.config.num_epochs}")
train_loss = self.train_epoch()
self.history['train_loss'].append(train_loss)
val_metrics = self.evaluate()
self.history['metrics'].append(val_metrics)
self.history['thresholds'].append(self.label_thresholds.cpu().tolist())
self.save_model(f'checkpoint_epoch_{epoch+1}.pt', val_metrics)
history_path = self.output_dir / 'history.json'
with open(history_path, 'w') as f:
json.dump(self.history, f, indent=4)
self.logger.info(f"Epoch {epoch + 1} completed. Train loss: {train_loss:.4f}")
self.logger.info("Training completed successfully!")
return self.history
except Exception as e:
self.logger.error(f"Training failed with error: {str(e)}")
raise |