File size: 13,410 Bytes
3ab6d8e
 
 
 
 
 
 
 
 
 
937a410
3ab6d8e
 
06ca50d
3ab6d8e
 
 
 
 
 
 
937a410
3ab6d8e
 
 
937a410
 
 
 
3ab6d8e
 
 
937a410
 
 
 
3ab6d8e
 
 
 
 
937a410
3ab6d8e
 
 
 
660777d
 
 
 
 
937a410
 
3ab6d8e
 
937a410
3ab6d8e
 
 
 
937a410
3ab6d8e
 
 
 
06ca50d
 
3ab6d8e
06ca50d
3ab6d8e
 
 
 
 
 
06ca50d
 
 
 
 
 
 
 
3ab6d8e
06ca50d
937a410
3ab6d8e
 
 
 
937a410
06ca50d
3ab6d8e
 
 
 
 
937a410
 
3ab6d8e
 
06ca50d
 
 
61d58d1
06ca50d
61d58d1
06ca50d
 
937a410
3ab6d8e
 
 
 
 
 
06ca50d
937a410
 
3ab6d8e
 
 
 
 
 
 
 
06ca50d
 
 
3ab6d8e
 
 
 
 
06ca50d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ab6d8e
06ca50d
3ab6d8e
 
937a410
3ab6d8e
937a410
 
 
 
 
 
3ab6d8e
660777d
 
937a410
 
 
 
 
 
 
3ab6d8e
660777d
 
 
 
 
3ab6d8e
937a410
660777d
 
 
937a410
 
 
 
 
660777d
 
 
 
 
 
937a410
 
 
 
 
 
3ab6d8e
 
 
 
 
937a410
 
 
 
 
 
3ab6d8e
 
06ca50d
3ab6d8e
 
06ca50d
3ab6d8e
 
06ca50d
3ab6d8e
 
937a410
 
 
 
 
 
 
 
 
3ab6d8e
 
06ca50d
 
3ab6d8e
937a410
 
 
3ab6d8e
06ca50d
 
3ab6d8e
06ca50d
 
3ab6d8e
06ca50d
 
 
3ab6d8e
06ca50d
 
 
 
 
 
 
 
 
 
3ab6d8e
 
 
06ca50d
3ab6d8e
 
 
 
 
 
937a410
3ab6d8e
 
 
06ca50d
 
3ab6d8e
 
06ca50d
3ab6d8e
937a410
3ab6d8e
937a410
 
 
 
 
 
 
 
 
06ca50d
 
937a410
 
 
 
 
 
 
 
3ab6d8e
937a410
 
3ab6d8e
937a410
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import torch
from torch.utils.data import DataLoader
from transformers import get_linear_schedule_with_warmup
from tqdm import tqdm
import logging
from pathlib import Path
import numpy as np
from sklearn.metrics import f1_score, precision_score, recall_score
import json
from datetime import datetime
from torch.cuda.amp import autocast, GradScaler

class NarrativeTrainer:
    """Enhanced trainer with detailed metrics and optimizations"""
    def __init__(
        self,
        model,
        train_dataset,
        val_dataset,
        config,
    ):
        # Setup basics
        self.setup_logging()
        self.logger = logging.getLogger(__name__)
        
        # Store config first
        self.config = config
        
        # Setup device
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.logger.info(f"Using device: {self.device}")
        
        # Clear GPU cache if using CUDA
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        
        # Initialize model and components
        self.model = model.to(self.device)
        self.train_dataset = train_dataset
        self.val_dataset = val_dataset
        
        # Initialize training state
        self.current_epoch = 0
        self.global_step = 0
        self.best_val_f1 = 0.0
        
        # Initialize mixed precision training (Fixed version)
        if self.config.fp16:
            self.scaler = torch.cuda.amp.GradScaler()
        else:
            self.scaler = None
        
        # Setup training components
        self.setup_training()
        
        # Setup output directory
        self.timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        self.output_dir = Path(config.output_dir) / self.timestamp
        self.output_dir.mkdir(parents=True, exist_ok=True)
        
        # Save config and initialize history
        self.save_config()
        self.history = {
            'train_loss': [],
            'val_loss': [],
            'metrics': [],
            'thresholds': []
        }

    def setup_logging(self):
        logging.basicConfig(
            level=logging.INFO,
            format='%(asctime)s - %(levelname)s - %(message)s',
            datefmt='%Y-%m-%d %H:%M:%S'
        )

    def calculate_class_weights(self):
        """Calculate weights for imbalanced classes"""
        pos_counts = self.train_dataset.labels.sum(dim=0)
        neg_counts = len(self.train_dataset) - pos_counts
        pos_weight = (neg_counts / pos_counts) * self.config.pos_weight_multiplier
        return torch.clamp(pos_weight, min=1.0, max=50.0).to(self.device)

    def setup_training(self):
        """Initialize training components with optimizations"""
        # Create dataloaders
        self.train_loader = DataLoader(
            self.train_dataset,
            batch_size=self.config.batch_size,
            shuffle=True,
            num_workers=4,
            pin_memory=True
        )
        
        self.val_loader = DataLoader(
            self.val_dataset,
            batch_size=self.config.batch_size,
            num_workers=4,
            pin_memory=True
        )
        
        # Calculate class weights
        pos_weight = self.calculate_class_weights()
        
        # Setup loss function with class weights only
        self.criterion = torch.nn.BCEWithLogitsLoss(
            pos_weight=pos_weight
        )
        
        # Setup optimizer
        self.optimizer = torch.optim.AdamW(
            self.model.parameters(),
            lr=self.config.learning_rate,
            weight_decay=self.config.weight_decay
        )
        
        # Setup scheduler
        num_update_steps_per_epoch = len(self.train_loader) // self.config.gradient_accumulation_steps
        num_training_steps = num_update_steps_per_epoch * self.config.num_epochs
        num_warmup_steps = int(num_training_steps * self.config.warmup_ratio)
        
        self.scheduler = get_linear_schedule_with_warmup(
            self.optimizer,
            num_warmup_steps=num_warmup_steps,
            num_training_steps=num_training_steps
        )
        
        # Initialize thresholds
        self.label_thresholds = torch.ones(self.train_dataset.get_num_labels()).to(self.device) * 0.5

    def save_config(self):
        config_dict = {k: str(v) for k, v in vars(self.config).items()}
        config_path = self.output_dir / 'config.json'
        with open(config_path, 'w') as f:
            json.dump(config_dict, f, indent=4)

    def find_optimal_thresholds(self, val_outputs, val_labels):
        """Find optimal threshold for each label"""
        outputs = torch.sigmoid(val_outputs).cpu().numpy()
        labels = val_labels.cpu().numpy()
        
        thresholds = []
        for i in range(labels.shape[1]):
            best_f1 = 0
            best_threshold = 0.5
            if labels[:, i].sum() > 0:  # Only if we have positive samples
                for threshold in np.arange(0.1, 0.9, 0.05):
                    preds = (outputs[:, i] > threshold).astype(int)
                    f1 = f1_score(labels[:, i], preds)
                    if f1 > best_f1:
                        best_f1 = f1
                        best_threshold = threshold
            thresholds.append(best_threshold)
        return torch.tensor(thresholds).to(self.device)

    def calculate_detailed_metrics(self, all_labels, all_preds, all_probs=None):
        """Calculate detailed metrics for model evaluation"""
        metrics = {}
        
        # Basic metrics
        metrics['micro'] = {
            'precision': precision_score(all_labels, all_preds, average='micro'),
            'recall': recall_score(all_labels, all_preds, average='micro'),
            'f1': f1_score(all_labels, all_preds, average='micro')
        }
        
        metrics['macro'] = {
            'precision': precision_score(all_labels, all_preds, average='macro'),
            'recall': recall_score(all_labels, all_preds, average='macro'),
            'f1': f1_score(all_labels, all_preds, average='macro')
        }
        
        metrics['weighted'] = {
            'precision': precision_score(all_labels, all_preds, average='weighted'),
            'recall': recall_score(all_labels, all_preds, average='weighted'),
            'f1': f1_score(all_labels, all_preds, average='weighted')
        }
        
        # Per-class metrics
        per_class_metrics = {}
        precisions = precision_score(all_labels, all_preds, average=None)
        recalls = recall_score(all_labels, all_preds, average=None)
        f1s = f1_score(all_labels, all_preds, average=None)
        
        for i in range(len(f1s)):
            per_class_metrics[f'class_{i}'] = {
                'precision': float(precisions[i]),
                'recall': float(recalls[i]),
                'f1': float(f1s[i]),
                'support': int(all_labels[:, i].sum())
            }
        
        metrics['per_class'] = per_class_metrics
        
        return metrics

    def train_epoch(self):
        """Train for one epoch with optimizations"""
        self.model.train()
        total_loss = 0
        self.optimizer.zero_grad()
        
        pbar = tqdm(enumerate(self.train_loader), 
                   total=len(self.train_loader),
                   desc=f'Epoch {self.current_epoch + 1}/{self.config.num_epochs}')
        
        for step, batch in pbar:
            batch = {k: v.to(self.device, non_blocking=True) for k, v in batch.items()}
            
            # Mixed precision training
            with torch.cuda.amp.autocast(enabled=self.config.fp16):
                outputs = self.model(
                    input_ids=batch['input_ids'],
                    attention_mask=batch['attention_mask'],
                    features=batch['features']
                )
                loss = self.criterion(outputs, batch['labels'])
                loss = loss / self.config.gradient_accumulation_steps
            
            # Backward pass with scaler if fp16 is enabled
            if self.config.fp16:
                self.scaler.scale(loss).backward()
            else:
                loss.backward()
            
            if (step + 1) % self.config.gradient_accumulation_steps == 0:
                if self.config.fp16:
                    self.scaler.unscale_(self.optimizer)
                    
                torch.nn.utils.clip_grad_norm_(
                    self.model.parameters(),
                    self.config.max_grad_norm
                )
                
                if self.config.fp16:
                    self.scaler.step(self.optimizer)
                    self.scaler.update()
                else:
                    self.optimizer.step()
                    
                self.scheduler.step()
                self.optimizer.zero_grad()
            
            total_loss += loss.item() * self.config.gradient_accumulation_steps
            avg_loss = total_loss / (step + 1)
            pbar.set_postfix({'loss': f'{avg_loss:.4f}'})
            
            self.global_step += 1
            
            if self.global_step % self.config.eval_steps == 0:
                self.evaluate()
            
            if step % 10 == 0:
                torch.cuda.empty_cache()
            
            del outputs
            del loss
        
        return total_loss / len(self.train_loader)

    @torch.no_grad()
    def evaluate(self):
        """Evaluate model with detailed metrics"""
        self.model.eval()
        total_loss = 0
        all_outputs, all_labels = [], []
        
        for batch in tqdm(self.val_loader, desc="Evaluating"):
            batch = {k: v.to(self.device, non_blocking=True) for k, v in batch.items()}
            
            with autocast(enabled=self.config.fp16):
                outputs = self.model(
                    input_ids=batch['input_ids'],
                    attention_mask=batch['attention_mask'],
                    features=batch['features']
                )
                loss = self.criterion(outputs, batch['labels'])
            
            total_loss += loss.item()
            all_outputs.append(outputs.cpu())
            all_labels.append(batch['labels'].cpu())
            
            del outputs
            del loss
            torch.cuda.empty_cache()
        
        all_outputs = torch.cat(all_outputs, dim=0)
        all_labels = torch.cat(all_labels, dim=0)
        
        if self.global_step % (self.config.eval_steps * 2) == 0:
            self.label_thresholds = self.find_optimal_thresholds(all_outputs, all_labels)
        
        all_probs = torch.sigmoid(all_outputs).numpy()
        all_preds = (all_probs > self.label_thresholds.cpu().unsqueeze(0).numpy())
        all_labels = all_labels.numpy()
        
        metrics = self.calculate_detailed_metrics(all_labels, all_preds, all_probs)
        metrics['loss'] = total_loss / len(self.val_loader)
        
        self.logger.info(f"Step {self.global_step} - Validation metrics:")
        self.logger.info(f"Loss: {metrics['loss']:.4f}")
        self.logger.info(f"Micro F1: {metrics['micro']['f1']:.4f}")
        self.logger.info(f"Macro F1: {metrics['macro']['f1']:.4f}")
        
        if metrics['micro']['f1'] > self.best_val_f1:
            self.best_val_f1 = metrics['micro']['f1']
            self.save_model('best_model.pt', metrics)
        
        return metrics

    def save_model(self, filename: str, metrics: dict = None):
        save_path = self.output_dir / filename
        torch.save({
            'model_state_dict': self.model.state_dict(),
            'optimizer_state_dict': self.optimizer.state_dict(),
            'scheduler_state_dict': self.scheduler.state_dict(),
            'scaler_state_dict': self.scaler.state_dict(),
            'epoch': self.current_epoch,
            'global_step': self.global_step,
            'best_val_f1': self.best_val_f1,
            'metrics': metrics,
            'thresholds': self.label_thresholds
        }, save_path)
        self.logger.info(f"Model saved to {save_path}")

    def train(self):
        """Run complete training loop"""
        self.logger.info("Starting training...")
        try:
            for epoch in range(self.config.num_epochs):
                self.current_epoch = epoch
                self.logger.info(f"Starting epoch {epoch + 1}/{self.config.num_epochs}")
                
                train_loss = self.train_epoch()
                self.history['train_loss'].append(train_loss)
                
                val_metrics = self.evaluate()
                self.history['metrics'].append(val_metrics)
                self.history['thresholds'].append(self.label_thresholds.cpu().tolist())
                
                self.save_model(f'checkpoint_epoch_{epoch+1}.pt', val_metrics)
                
                history_path = self.output_dir / 'history.json'
                with open(history_path, 'w') as f:
                    json.dump(self.history, f, indent=4)
                
                self.logger.info(f"Epoch {epoch + 1} completed. Train loss: {train_loss:.4f}")
            
            self.logger.info("Training completed successfully!")
            return self.history
            
        except Exception as e:
            self.logger.error(f"Training failed with error: {str(e)}")
            raise