File size: 6,363 Bytes
f549a1f
 
 
 
8c1bccf
f549a1f
 
 
 
 
 
 
 
 
 
 
 
 
 
6bd2d1a
 
 
 
 
 
 
 
 
f549a1f
 
 
517bc28
f549a1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c1bccf
5de4c7b
 
 
 
 
 
 
 
 
 
 
 
 
6dbd85a
 
 
 
 
 
 
 
 
 
 
5de4c7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12d679e
5de4c7b
e15c51f
5de4c7b
 
 
 
6bd2d1a
 
 
18ac332
6bd2d1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12d679e
 
 
 
 
6bd2d1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e15c51f
6bd2d1a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import os
import random
from typing import Callable, Dict, Optional, Tuple

import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch

from transformers import CLIPTextModel
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, DDIMScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler

MODEL = "eienmojiki/Starry-XL-v5.2"
HF_TOKEN = os.getenv("HF_TOKEN")
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512"))
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
MAX_SEED = np.iinfo(np.int32).max

sampler_list = [
    "DPM++ 2M Karras",
    "DPM++ SDE Karras",
    "DPM++ 2M SDE Karras",
    "Euler",
    "Euler a",
    "DDIM",
]

torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        return seed

def seed_everything(seed: int) -> torch.Generator:
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    generator = torch.Generator()
    generator.manual_seed(seed)
    return generator

def get_scheduler(scheduler_config: Dict, name: str) -> Optional[Callable]:
    scheduler_factory_map = {
        "DPM++ 2M Karras": lambda: DPMSolverMultistepScheduler.from_config(
            scheduler_config, use_karras_sigmas=True
            ),
        "DPM++ SDE Karras": lambda: DPMSolverSinglestepScheduler.from_config(
            scheduler_config, use_karras_sigmas=True
            ),
        "DPM++ 2M SDE Karras": lambda: DPMSolverMultistepScheduler.from_config(
            scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"
            ),
        "Euler": lambda: EulerDiscreteScheduler.from_config(scheduler_config),
        "Euler a": lambda: EulerAncestralDiscreteScheduler.from_config(scheduler_config),
        "DDIM": lambda: DDIMScheduler.from_config(scheduler_config),
    }
    return scheduler_factory_map.get(name, lambda: None)()

@spaces.GPU
def generate(
    prompt: str,
    negative_prompt: str = None,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 5.0,
    num_inference_steps: int = 24,
    sampler: str = "Euler a",
    clip_skip: int = 1,
    progress=gr.Progress(track_tqdm=True),
):
    if torch.cuda.is_available():
        pipe = StableDiffusionXLPipeline.from_pretrained(
            MODEL,
            torch_dtype=torch.float16,
            custom_pipeline="lpw_stable_diffusion_xl",
            safety_checker=None,
            use_safetensors=True,
            add_watermarker=False,
            use_auth_token=HF_TOKEN
        )
    pipe.to(device)
    
    generator = seed_everything(seed)
    pipe.scheduler = get_scheduler(pipe.scheduler.config, sampler)
    pipe.text_encoder = CLIPTextModel.from_pretrained(
        MODEL,
        subfolder = "text_encoder",
        num_hidden_layers = 12 - (clip_skip - 1),
        torch_dtype = torch.float16
    )

    try:

        img = pipe(
            prompt = prompt,
            negative_prompt = negative_prompt,
            width = width,
            height = height,
            guidance_scale = guidance_scale,
            num_inference_steps = num_inference_steps,
            generator = generator,
            output_type="pil",
        ).images

        return img

    except Exception as e:
        print(f"An error occurred: {e}")

with gr.Blocks(
    theme=gr.themes.Soft()
) as demo:
    gr.Markdown("# Starry XL 5.2 Demo")

    with gr.Group():
        prompt = gr.Text(
            label="Prompt",
            placeholder="Enter your prompt here..."
        )

        negative_prompt = gr.Text(
            label="Negative Prompt",
            placeholder="(Optional) Enter your negative prompt here..."
        )

        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )

        sampler = gr.Dropdown(
            label="Sampler",
            choices=sampler_list,
            interactive=True,
            value="Euler a",
        )        
        
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
    
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance scale",
                minimum=1,
                maximum=20,
                step=0.1,
                value=5.0,
            )
            num_inference_steps = gr.Slider(
                label="Steps",
                minimum=10,
                maximum=100,
                step=1,
                value=25,
            )

        clip_skip = gr.Slider(
            label="Clip Skip",
            minimum=1,
            maximum=2,
            step=1,
            value=1
        )

        run_button = gr.Button("Run")

        result = gr.Gallery(
            label="Result", 
            columns=1, 
            height="512px", 
            preview=True, 
            show_label=False
        )

        used_seed = gr.Number(label="Used Seed", interactive=False)

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,         
            run_button.click,
        ],
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            sampler,
            clip_skip
        ],
        outputs=result,
        api_name="run"
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch(show_error=True)