Spaces:
Sleeping
Sleeping
import os | |
import random | |
from typing import Callable, Dict, Optional, Tuple | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
import spaces | |
import torch | |
from transformers import CLIPTextModel | |
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, DDIMScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler | |
MODEL = "eienmojiki/Starry-XL-v5.2" | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512")) | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048")) | |
MAX_SEED = np.iinfo(np.int32).max | |
sampler_list = [ | |
"DPM++ 2M Karras", | |
"DPM++ SDE Karras", | |
"DPM++ 2M SDE Karras", | |
"Euler", | |
"Euler a", | |
"DDIM", | |
] | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def seed_everything(seed: int) -> torch.Generator: | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
np.random.seed(seed) | |
generator = torch.Generator() | |
generator.manual_seed(seed) | |
return generator | |
def get_scheduler(scheduler_config: Dict, name: str) -> Optional[Callable]: | |
scheduler_factory_map = { | |
"DPM++ 2M Karras": lambda: DPMSolverMultistepScheduler.from_config( | |
scheduler_config, use_karras_sigmas=True | |
), | |
"DPM++ SDE Karras": lambda: DPMSolverSinglestepScheduler.from_config( | |
scheduler_config, use_karras_sigmas=True | |
), | |
"DPM++ 2M SDE Karras": lambda: DPMSolverMultistepScheduler.from_config( | |
scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++" | |
), | |
"Euler": lambda: EulerDiscreteScheduler.from_config(scheduler_config), | |
"Euler a": lambda: EulerAncestralDiscreteScheduler.from_config(scheduler_config), | |
"DDIM": lambda: DDIMScheduler.from_config(scheduler_config), | |
} | |
return scheduler_factory_map.get(name, lambda: None)() | |
def generate( | |
prompt: str, | |
negative_prompt: str = None, | |
seed: int = 0, | |
width: int = 1024, | |
height: int = 1024, | |
guidance_scale: float = 5.0, | |
num_inference_steps: int = 24, | |
sampler: str = "Euler a", | |
clip_skip: int = 1, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if torch.cuda.is_available(): | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
MODEL, | |
torch_dtype=torch.float16, | |
custom_pipeline="lpw_stable_diffusion_xl", | |
safety_checker=None, | |
use_safetensors=True, | |
add_watermarker=False, | |
use_auth_token=HF_TOKEN | |
) | |
pipe.to(device) | |
generator = seed_everything(seed) | |
pipe.scheduler = get_scheduler(pipe.scheduler.config, sampler) | |
pipe.text_encoder = CLIPTextModel.from_pretrained( | |
MODEL, | |
subfolder = "text_encoder", | |
num_hidden_layers = 12 - (clip_skip - 1), | |
torch_dtype = torch.float16 | |
) | |
try: | |
img = pipe( | |
prompt = prompt, | |
negative_prompt = negative_prompt, | |
width = width, | |
height = height, | |
guidance_scale = guidance_scale, | |
num_inference_steps = num_inference_steps, | |
generator = generator, | |
output_type="pil", | |
).images | |
return img | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
with gr.Blocks( | |
theme=gr.themes.Soft() | |
) as demo: | |
gr.Markdown("# Starry XL 5.2 Demo") | |
with gr.Group(): | |
prompt = gr.Text( | |
label="Prompt", | |
placeholder="Enter your prompt here..." | |
) | |
negative_prompt = gr.Text( | |
label="Negative Prompt", | |
placeholder="(Optional) Enter your negative prompt here..." | |
) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
sampler = gr.Dropdown( | |
label="Sampler", | |
choices=sampler_list, | |
interactive=True, | |
value="Euler a", | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=1, | |
maximum=20, | |
step=0.1, | |
value=5.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Steps", | |
minimum=10, | |
maximum=100, | |
step=1, | |
value=25, | |
) | |
clip_skip = gr.Slider( | |
label="Clip Skip", | |
minimum=1, | |
maximum=2, | |
step=1, | |
value=1 | |
) | |
run_button = gr.Button("Run") | |
result = gr.Gallery( | |
label="Result", | |
columns=1, | |
height="512px", | |
preview=True, | |
show_label=False | |
) | |
used_seed = gr.Number(label="Used Seed", interactive=False) | |
gr.on( | |
triggers=[ | |
prompt.submit, | |
negative_prompt.submit, | |
run_button.click, | |
], | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=generate, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
sampler, | |
clip_skip | |
], | |
outputs=result, | |
api_name="run" | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch(show_error=True) |