|
import os |
|
import json |
|
|
|
import numpy as np |
|
import ffmpeg |
|
import whisper |
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer |
|
from sklearn.tree import DecisionTreeRegressor |
|
import torch |
|
import youtube_dl |
|
import pandas as pd |
|
import streamlit as st |
|
import altair as alt |
|
|
|
DATA_DIR = "./data" |
|
if not os.path.exists(DATA_DIR): |
|
os.makedirs(DATA_DIR) |
|
|
|
YDL_OPTS = { |
|
"download_archive": os.path.join(DATA_DIR, "archive.txt"), |
|
"format": "bestaudio/best", |
|
"outtmpl": os.path.join(DATA_DIR, "%(title)s.%(ext)s"), |
|
"postprocessors": [ |
|
{ |
|
"key": "FFmpegExtractAudio", |
|
"preferredcodec": "mp3", |
|
"preferredquality": "192", |
|
} |
|
], |
|
} |
|
|
|
llm = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small") |
|
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small") |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
def download(url, ydl_opts): |
|
with youtube_dl.YoutubeDL(ydl_opts) as ydl: |
|
result = ydl.extract_info("{}".format(url)) |
|
fname = ydl.prepare_filename(result) |
|
return fname |
|
|
|
|
|
def transcribe(audio_path, transcript_path): |
|
if os.path.exists(transcript_path): |
|
with open(transcript_path, "r") as f: |
|
result = json.load(f) |
|
else: |
|
whisper_model = whisper.load_model("base") |
|
result = whisper_model.transcribe(audio_path) |
|
with open(transcript_path, "w") as f: |
|
json.dump(result, f) |
|
return result["segments"] |
|
|
|
|
|
def compute_seg_durations(segments): |
|
return [s["end"] - s["start"] for s in segments] |
|
|
|
|
|
def compute_info_densities( |
|
segments, seg_durations, llm, tokenizer, device, ctxt_len=512 |
|
): |
|
seg_encodings = [tokenizer(seg["text"], return_tensors="pt") for seg in segments] |
|
input_ids = [enc.input_ids.to(device) for enc in seg_encodings] |
|
seg_lens = [x.shape[1] for x in input_ids] |
|
cat_input_ids = torch.cat(input_ids, axis=1) |
|
end = 0 |
|
seg_nlls = [] |
|
n = cat_input_ids.shape[1] |
|
for i, seg_len in enumerate(seg_lens): |
|
end = min(n, end + seg_len) |
|
start = max(0, end - ctxt_len) |
|
ctxt_ids = cat_input_ids[:, start:end] |
|
target_ids = ctxt_ids.clone() |
|
target_ids[:, :-seg_len] = -100 |
|
avg_nll = llm(ctxt_ids, labels=target_ids).loss.detach().numpy() |
|
nll = avg_nll * seg_len |
|
seg_nlls.append(nll) |
|
seg_nlls = np.array(seg_nlls) |
|
info_densities = seg_nlls / seg_durations |
|
return info_densities |
|
|
|
|
|
def smooth_info_densities(info_densities, seg_durations, max_leaf_nodes, min_sec_leaf): |
|
min_samples_leaf = int(np.ceil(min_sec_leaf / np.mean(seg_durations))) |
|
tree = DecisionTreeRegressor( |
|
max_leaf_nodes=max_leaf_nodes, min_samples_leaf=min_samples_leaf |
|
) |
|
X = np.arange(0, len(info_densities), 1)[:, np.newaxis] |
|
tree.fit(X, info_densities) |
|
smoothed_info_densities = tree.predict(X) |
|
return smoothed_info_densities |
|
|
|
|
|
def squash_segs(segments, info_densities): |
|
start = segments[0]["start"] |
|
end = None |
|
seg_times = [] |
|
seg_densities = [info_densities[0]] |
|
for i in range(1, len(segments)): |
|
curr_density = info_densities[i] |
|
if curr_density != info_densities[i - 1]: |
|
seg = segments[i] |
|
seg_start = seg["start"] |
|
seg_times.append((start, seg_start)) |
|
seg_densities.append(curr_density) |
|
start = seg_start |
|
seg_times.append((start, segments[-1]["end"])) |
|
return seg_times, seg_densities |
|
|
|
|
|
def compute_speedups(info_densities): |
|
avg_density = np.mean(info_densities) |
|
speedups = avg_density / info_densities |
|
return speedups |
|
|
|
|
|
def compute_actual_speedup(durations, speedups, total_duration): |
|
spedup_durations = durations / speedups |
|
spedup_total_duration = spedup_durations.sum() |
|
actual_speedup_factor = total_duration / spedup_total_duration |
|
return spedup_total_duration, actual_speedup_factor |
|
|
|
|
|
def postprocess_speedups( |
|
speedups, factor, min_speedup, max_speedup, durations, total_duration, thresh=0.01 |
|
): |
|
assert min_speedup <= factor and factor <= max_speedup |
|
tuned_factor = np.array([factor / 10, factor * 10]) |
|
actual_speedup_factor = None |
|
while ( |
|
actual_speedup_factor is None |
|
or abs(actual_speedup_factor - factor) / factor > thresh |
|
): |
|
mid = tuned_factor.mean() |
|
tuned_speedups = speedups * mid |
|
tuned_speedups = np.round(tuned_speedups, decimals=2) |
|
tuned_speedups = np.clip(tuned_speedups, min_speedup, max_speedup) |
|
_, actual_speedup_factor = compute_actual_speedup( |
|
durations, tuned_speedups, total_duration |
|
) |
|
tuned_factor[0 if actual_speedup_factor < factor else 1] = mid |
|
return tuned_speedups |
|
|
|
|
|
def cat_clips(seg_times, speedups, audio_path, output_path): |
|
if os.path.exists(output_path): |
|
os.remove(output_path) |
|
in_file = ffmpeg.input(audio_path) |
|
segs = [] |
|
for (start, end), speedup in zip(seg_times, speedups): |
|
seg = in_file.filter("atrim", start=start, end=end).filter("atempo", speedup) |
|
segs.append(seg) |
|
cat = ffmpeg.concat(*segs, v=0, a=1) |
|
cat.output(output_path).run() |
|
|
|
|
|
def format_duration(duration): |
|
s = duration % 60 |
|
m = duration // 60 |
|
h = m // 60 |
|
return "%02d:%02d:%02d" % (h, m, s) |
|
|
|
|
|
def strike(url, speedup_factor, min_speedup, max_speedup, max_num_segments): |
|
|
|
min_speedup = max(0.5, min_speedup) |
|
|
|
name = download(url, YDL_OPTS) |
|
assert name.endswith(".m4a") |
|
name = name.split(".m4a")[0].split("/")[-1] |
|
|
|
audio_path = os.path.join(DATA_DIR, "%s.mp3" % name) |
|
transcript_path = os.path.join(DATA_DIR, "%s.json" % name) |
|
output_path = os.path.join(DATA_DIR, "%s_smooth.mp3" % name) |
|
|
|
segments = transcribe(audio_path, transcript_path) |
|
|
|
seg_durations = compute_seg_durations(segments) |
|
|
|
info_densities = compute_info_densities( |
|
segments, seg_durations, llm, tokenizer, device |
|
) |
|
|
|
total_duration = segments[-1]["end"] - segments[0]["start"] |
|
min_sec_leaf = total_duration / max_num_segments |
|
smoothed_info_densities = smooth_info_densities( |
|
info_densities, seg_durations, max_num_segments, min_sec_leaf |
|
) |
|
|
|
squashed_times, squashed_densities = squash_segs(segments, smoothed_info_densities) |
|
squashed_durations = np.array([end - start for start, end in squashed_times]) |
|
|
|
speedups = compute_speedups(squashed_densities) |
|
speedups = postprocess_speedups( |
|
speedups, |
|
speedup_factor, |
|
min_speedup, |
|
max_speedup, |
|
squashed_durations, |
|
total_duration, |
|
) |
|
|
|
cat_clips(squashed_times, speedups, audio_path, output_path) |
|
|
|
spedup_total_duration, actual_speedup_factor = compute_actual_speedup( |
|
squashed_durations, speedups, total_duration |
|
) |
|
st.write("original duration: %s" % format_duration(total_duration)) |
|
st.write("new duration: %s" % format_duration(spedup_total_duration)) |
|
st.write("speedup: %0.2f" % actual_speedup_factor) |
|
|
|
times = np.array([(seg["start"] + seg["end"]) / 2 for seg in segments]) |
|
times /= 60 |
|
annotations = [seg["text"] for seg in segments] |
|
data = [times, info_densities / np.log(2), annotations] |
|
cols = ["time (minutes)", "bits per second", "transcript"] |
|
df = pd.DataFrame(list(zip(*data)), columns=cols) |
|
|
|
lines = ( |
|
alt.Chart(df, title="information rate") |
|
.mark_line(color="gray", opacity=0.5) |
|
.encode( |
|
x=cols[0], |
|
y=cols[1], |
|
) |
|
) |
|
dots = ( |
|
alt.Chart(df) |
|
.mark_circle(size=50, opacity=1) |
|
.encode(x=cols[0], y=cols[1], tooltip=["transcript"]) |
|
) |
|
st.altair_chart((lines + dots).interactive(), use_container_width=True) |
|
|
|
times = sum([list(x) for x in squashed_times], []) |
|
times = np.array(times) |
|
times /= 60 |
|
data = [times, np.repeat(speedups, 2)] |
|
cols = ["time (minutes)", "speedup"] |
|
df = pd.DataFrame(list(zip(*data)), columns=cols) |
|
min_actual_speedups = min(speedups) |
|
max_actual_speedups = max(speedups) |
|
eps = 0.1 |
|
lines = ( |
|
alt.Chart(df, title="speedup based on information rate") |
|
.mark_line() |
|
.encode( |
|
x=cols[0], |
|
y=alt.Y( |
|
cols[1], |
|
scale=alt.Scale( |
|
domain=(min_actual_speedups - eps, max_actual_speedups + eps) |
|
), |
|
), |
|
) |
|
) |
|
st.altair_chart(lines.interactive(), use_container_width=True) |
|
|
|
return output_path |
|
|
|
|
|
with st.form("my_form"): |
|
url = st.text_input( |
|
"youtube url", value="https://www.youtube.com/watch?v=_3MBQm7GFIM" |
|
) |
|
speedup_factor = st.slider("speedup", min_value=1.0, max_value=10.0, value=1.5) |
|
min_speedup = 1 |
|
max_speedup = st.slider("maximum speedup", min_value=1.0, max_value=10.0, value=2.0) |
|
speedup_factor = min(speedup_factor, max_speedup) |
|
max_num_segments = st.slider( |
|
"variance in speedup over time", min_value=2, max_value=100, value=20 |
|
) |
|
submitted = st.form_submit_button("submit") |
|
if submitted: |
|
st.write("original video:") |
|
st.video(url) |
|
with st.spinner("processing audio..."): |
|
output_path = strike( |
|
url, speedup_factor, min_speedup, max_speedup, max_num_segments |
|
) |
|
st.write("processed audio:") |
|
st.audio(output_path) |
|
|