File size: 4,138 Bytes
b8b1c07
adccde7
284e370
adccde7
 
284e370
 
 
 
c35f66d
284e370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adccde7
 
 
284e370
adccde7
 
 
 
 
 
 
c35f66d
284e370
 
c35f66d
 
 
 
adccde7
 
 
 
d968e4a
adccde7
 
 
 
 
 
 
 
 
 
 
 
284e370
adccde7
 
 
 
 
c35f66d
 
 
b8b1c07
 
c35f66d
 
 
b8b1c07
adccde7
c35f66d
 
b8b1c07
 
adccde7
c35f66d
adccde7
c35f66d
 
 
 
adccde7
c35f66d
adccde7
 
f710225
adccde7
f710225
c35f66d
 
 
adccde7
b8b1c07
 
38f501c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, AutoModel
from huggingface_hub import hf_hub_download
import os
import torch.nn as nn

# ----- Model Definition -----
class CustomDialoGPT(nn.Module):
    def __init__(self, vocab_size, n_embd=768, n_head=8, n_layer=8): # <---- FORCE n_embd, n_head, n_layer to match your model
        super().__init__()

        config = AutoConfig.from_pretrained("microsoft/DialoGPT-medium",
            vocab_size=vocab_size,
            n_embd=n_embd,
            n_head=n_head,
            n_layer=n_layer,
            bos_token_id=50256,
            eos_token_id=50256,
            pad_token_id = 50256
        )
        self.transformer = AutoModelForCausalLM.from_config(config) # Use AutoModelForCausalLM here
        self.lm_head = nn.Linear(n_embd, vocab_size, bias=False) # Keep lm_head

    def forward(self, input_ids):
        transformer_outputs = self.transformer(input_ids=input_ids, output_hidden_states=True)
        hidden_states = transformer_outputs.hidden_states[-1] #get last hidden state
        logits = self.lm_head(hidden_states)
        return logits


# Model and tokenizer details
model_repo = "elapt1c/ElapticAI-1a"
model_filename = "model.pth" # <--- CHECK FILENAME ON HF HUB, UPDATE IF NEEDED!
tokenizer_name = "microsoft/DialoGPT-medium"

# Device configuration
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
vocab_size = len(tokenizer) # <---- Define vocab_size AFTER loading tokenizer

# Initialize model with fixed parameters to match checkpoint
n_embd=768
n_head=8
n_layer=8
model = CustomDialoGPT(vocab_size, n_embd, n_head, n_layer).to(device).eval()

# Download and load model weights
try:
    pth_filepath = hf_hub_download(repo_id=model_repo, filename=model_filename)
    checkpoint = torch.load(pth_filepath, map_location=device)

    # Handle different checkpoint saving formats if needed.
    if 'model_state_dict' in checkpoint:
        model.load_state_dict(checkpoint['model_state_dict'])
    elif 'state_dict' in checkpoint:
        model.load_state_dict(checkpoint['state_dict'])
    else:
        model.load_state_dict(checkpoint)

    print(f"Successfully loaded model weights from {model_repo}/{model_filename}")
except Exception as e:
    print(f"Error loading model: {e}")
    print("Please ensure the model repository and filename are correct and that the model architecture in app.py matches the checkpoint.")
    raise e # It's better to raise the error in a Space, so it's visible.

model.to(device)
model.eval() # Set model to evaluation mode

def chat_with_model(user_input): # Removed history parameter for gr.Text() output
    """Chatbot function to interact with the loaded model - DYNAMIC RESPONSE."""
    input_ids = tokenizer.encode(user_input, return_tensors='pt').to(device)

    with torch.no_grad():
        output = model.transformer.generate(
            inputs=input_ids,
            max_length=100,
            pad_token_id=tokenizer.eos_token_id,
            temperature=0.7,
            top_p=0.9,
            do_sample=True
        )

    response = tokenizer.decode(output[0], skip_special_tokens=True)
    bot_response = response # No need to split for gr.Text()

    print("--- chat_with_model Output ---") # Debugging print
    print("user_input:", user_input)        # Debugging print
    print("bot_response:", bot_response)      # Debugging print
    print("--- End of chat_with_model Output ---") # Debugging print

    return bot_response # Just return bot_response for gr.Text()


iface = gr.Interface( # Changed from gr.ChatInterface to gr.Interface
    fn=chat_with_model,
    inputs=gr.Textbox(placeholder="Type your message here..."), # Explicitly define inputs as gr.Textbox
    outputs=gr.Text(), # Changed outputs to gr.Text()
    title="ElapticAI-1a Chatbot - TESTING MODEL RESPONSE", # Updated title
    description="Simple chatbot interface for ElapticAI-1a model - TESTING MODEL RESPONSE" # Updated description
)

if __name__ == "__main__":
    iface.launch()