Spaces:
Build error
Build error
File size: 3,698 Bytes
de161f5 39620fb de161f5 39620fb edb1e33 39620fb edb1e33 39620fb edb1e33 0a40299 edb1e33 39620fb 4fd044c 39620fb 508039d de161f5 6f4bf29 de161f5 508039d 39620fb 508039d edb1e33 508039d 0a40299 142631d 39620fb 4fd044c de161f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
import gradio as gr
from transformers import pipeline
import numpy as np
import pandas as pd
from sentence_transformers import SentenceTransformer, util
import nltk
from nltk import sent_tokenize
nltk.download("punkt")
# Loading in dataframes
krishnamurti_df = pd.read_json("krishnamurti_df.json")
stoic_df = pd.read_json("stoic_df.json")
# Loading in sentence_similarity model
sentence_similarity_model = "all-mpnet-base-v2"
model = SentenceTransformer(sentence_similarity_model)
# Loading in text-generation models
stoic_generator = pipeline("text-generation", model="eliwill/stoic-generator-10e")
krishnamurti_generator = pipeline("text-generation", model="distilgpt2")
# Creating philosopher dictionary
philosopher_dictionary = {
"stoic": {
"generator": stoic_generator,
"dataframe": stoic_df
},
"krishnamurti": {
"generator": krishnamurti_generator,
"dataframe": krishnamurti_df
}
}
############### DEFINING FUNCTIONS ###########################
def ask_philosopher(philosopher, question):
""" Return first 5 sentences generated by question for the given philosopher model """
generator = philosopher_dictionary[philosopher]['generator']
answer = generator(question, min_length=100, max_length=120)[0]['generated_text'] # generate about 50 word tokens
answer = " ".join(sent_tokenize(answer)[:6]) # Get the first five sentences
return answer
def get_similar_quotes(philosopher, question):
""" Return top 5 most similar quotes to the question from a philosopher's dataframe """
df = philosopher_dictionary[philosopher]['dataframe']
question_embedding = model.encode(question)
sims = [util.dot_score(question_embedding, quote_embedding) for quote_embedding in df['Embedding']]
ind = np.argpartition(sims, -5)[-5:]
similar_sentences = [df['quote'][i] for i in ind]
top5quotes = pd.DataFrame(data = similar_sentences, columns=["Quotes"], index=range(1,6))
top5quotes['Quotes'] = top5quotes['Quotes'].str[:-1].str[:250] + "..."
return top5quotes
def main(question, philosopher):
out_image = "marcus-aurelius.jpg"
return ask_philosopher(philosopher, question), get_similar_quotes(philosopher, question), out_image
with gr.Blocks(css=".gradio-container {background-image: url('file=mountains_resized.jpg')} # title {color: #F0FFFF}") as demo:
gr.Markdown("""
# Ask a Philsopher
""",
elem_id="title"
)
with gr.Row():
with gr.Column():
inp1 = gr.Textbox(placeholder="Place your question here...", label="Ask a question", elem_id="title")
inp2 = gr.Dropdown(choices=["stoic", "krishnamurti"], value="stoic", label="Choose a philosopher")
out1 = gr.Textbox(
lines=3,
max_lines=10,
label="Answer"
)
with gr.Row():
out_image = gr.Image(label="Picture", image_mode="L")
out2 = gr.DataFrame(
headers=["Quotes"],
max_rows=5,
interactive=False,
wrap=True
value=[["When you arise in the morning, think of what a precious privilege it is to be alive – to breathe, to think, to enjoy, to love.",
"Each day provides its own gifts.",
"Only time can heal what reason cannot.",
"He who is brave is free.",
"First learn the meaning of what you say, and then speak."]]
btn = gr.Button("Run")
btn.click(fn=main, inputs=[inp1,inp2], outputs=[out1,out2,out_image])
demo.launch() |