File size: 9,113 Bytes
a02a7e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import time
from collections import OrderedDict
from os.path import join as pjoin

import numpy as np
import torch
import torch.optim as optim
from mmcv.runner import get_dist_info
from torch.nn.utils import clip_grad_norm_

# import wandb
from datasets import build_dataloader
from mmcv.runner import get_dist_info
from models.gaussian_diffusion import (GaussianDiffusion, LossType,
                                       ModelMeanType, ModelVarType,
                                       create_named_schedule_sampler,
                                       get_named_beta_schedule)
from utils.utils import print_current_loss




class DDPMTrainer(object):

    def __init__(self, args, encoder):
        self.opt = args
        self.device = args.device
        self.encoder = encoder # MotionTransformer from train.build_models
        self.diffusion_steps = args.diffusion_steps
        sampler = 'uniform'
        beta_scheduler = 'linear'
        betas = get_named_beta_schedule(beta_scheduler, self.diffusion_steps)
        self.diffusion = GaussianDiffusion(
            betas=betas,
            model_mean_type=ModelMeanType.EPSILON,
            model_var_type=ModelVarType.FIXED_SMALL,
            loss_type=LossType.MSE
        )
        self.sampler = create_named_schedule_sampler(sampler, self.diffusion)
        self.sampler_name = sampler

        if args.is_train:
            self.mse_criterion = torch.nn.MSELoss(reduction='none')
        self.to(self.device)

    @staticmethod
    def zero_grad(opt_list):
        for opt in opt_list:
            opt.zero_grad()

    @staticmethod
    def clip_norm(network_list):
        for network in network_list:
            clip_grad_norm_(network.parameters(), 0.5)

    @staticmethod
    def step(opt_list):
        for opt in opt_list:
            opt.step()

    def forward(self, batch_data, eval_mode=False):
        caption, motions, m_lens = batch_data
        motions = motions.detach().to(self.device).float()

        self.caption = caption
        self.motions = motions
        x_start = motions
        B, T = x_start.shape[:2]
        cur_len = torch.LongTensor([min(T, m_len) for m_len in  m_lens]).to(self.device)
        t, _ = self.sampler.sample(B, x_start.device)
        output = self.diffusion.training_losses(
            model=self.encoder, # MotionDiffusion is encoder
            x_start=x_start,
            t=t,
            model_kwargs={"text": caption, "length": cur_len}
        )
        self.real_noise = output['target']
        self.fake_noise = output['pred']
        try:
            self.src_mask = self.encoder.module.generate_src_mask(T, cur_len).to(x_start.device)
        except:
            self.src_mask = self.encoder.generate_src_mask(T, cur_len).to(x_start.device)

    def generate_batch(self, caption, m_lens, dim_pose):
        # import pdb; pdb.set_trace()
        # xf_proj they explain here https://github.com/mingyuan-zhang/MotionDiffuse/issues/10
        # is an overall semantic feature to represent given language description,
        # a common choice in NLP and motion gen & GLIDE is to use last token to represent overall characteristics
        xf_proj, xf_out = self.encoder.encode_text(caption, self.device)
        
        B = len(caption)
        T = min(m_lens.max(), self.encoder.num_frames)
        output = self.diffusion.p_sample_loop(
            self.encoder,
            (B, T, dim_pose),
            clip_denoised=False,
            progress=True,
            model_kwargs={
                'xf_proj': xf_proj,
                'xf_out': xf_out,
                'length': m_lens
            })
        return output

    def generate(self, caption, m_lens, dim_pose, batch_size=1024):
        N = len(caption)
        cur_idx = 0
        self.encoder.eval()
        all_output = []
        while cur_idx < N:
            if cur_idx + batch_size >= N:
                batch_caption = caption[cur_idx:]
                batch_m_lens = m_lens[cur_idx:]
            else:
                batch_caption = caption[cur_idx: cur_idx + batch_size]
                batch_m_lens = m_lens[cur_idx: cur_idx + batch_size]
            output = self.generate_batch(batch_caption, batch_m_lens, dim_pose)
            B = output.shape[0]

            for i in range(B):
                all_output.append(output[i])
            cur_idx += batch_size
        return all_output

    def backward_G(self):
        loss_mot_rec = self.mse_criterion(self.fake_noise, self.real_noise).mean(dim=-1)
        loss_mot_rec = (loss_mot_rec * self.src_mask).sum() / self.src_mask.sum()
        self.loss_mot_rec = loss_mot_rec
        loss_logs = OrderedDict({})
        loss_logs['loss_mot_rec'] = self.loss_mot_rec.item()
        return loss_logs

    def update(self):
        self.zero_grad([self.opt_encoder])
        loss_logs = self.backward_G()
        self.loss_mot_rec.backward()
        self.clip_norm([self.encoder])
        self.step([self.opt_encoder])

        return loss_logs

    def to(self, device):
        if self.opt.is_train:
            self.mse_criterion.to(device)
        self.encoder = self.encoder.to(device)

    def train_mode(self):
        self.encoder.train()

    def eval_mode(self):
        self.encoder.eval()

    def save(self, file_name, ep, total_it):
        state = {
            'opt_encoder': self.opt_encoder.state_dict(),
            'ep': ep,
            'total_it': total_it
        }
        try:
            state['encoder'] = self.encoder.module.state_dict()
        except:
            state['encoder'] = self.encoder.state_dict()
        torch.save(state, file_name)
        return

    def load(self, model_dir):
        print(f'{self.__class__.__name__} loading model {model_dir}')
        checkpoint = torch.load(model_dir, map_location=self.device)
        if self.opt.is_train:
            self.opt_encoder.load_state_dict(checkpoint['opt_encoder'])
        self.encoder.load_state_dict(checkpoint['encoder'], strict=True)
        return checkpoint['ep'], checkpoint.get('total_it', 0)

    def train(self, train_dataset):
        rank, world_size = get_dist_info()
        self.to(self.device)
        self.opt_encoder = optim.Adam(self.encoder.parameters(), lr=self.opt.lr)
        it = 0
        cur_epoch = 0
        if self.opt.is_continue:
            # model_dir = pjoin(self.opt.model_dir, 'latest.tar')
            model_dir = pjoin(self.opt.model_dir, f'{self.opt.model_name}.tar')
            cur_epoch, it = self.load(model_dir)

        start_time = time.time()

        train_loader = build_dataloader(
            train_dataset,
            samples_per_gpu=self.opt.batch_size,
            drop_last=True,
            workers_per_gpu=4,
            shuffle=True,
            dist=self.opt.distributed,
            num_gpus=len(self.opt.gpu_id))

        logs = OrderedDict()
        for epoch in range(cur_epoch, self.opt.num_epochs):
            print(f"epoch {epoch}, logging to wandb every {self.opt.log_every} iters")
            self.train_mode()
            # import pdb; pdb.set_trace()
            for i, batch_data in enumerate(train_loader):
                print(f"epoch {epoch}, batch {i}")
                self.forward(batch_data)
                log_dict = self.update()
                for k, v in log_dict.items():
                    if k not in logs:
                        logs[k] = v
                    else:
                        logs[k] += v
                it += 1
                if it % self.opt.log_every == 0 and rank == 0:
                    mean_loss = OrderedDict({})
                    for tag, value in logs.items():
                        mean_loss[tag] = value / self.opt.log_every
                    logs = OrderedDict()
                    print_current_loss(start_time, it, mean_loss, epoch, inner_iter=i)
                    if self.opt.use_wandb:
                        print(f"logging loss w wandb {mean_loss['loss_mot_rec']:.4f}")
                        perf_dict = {
                            'loss_mot_rec': mean_loss['loss_mot_rec']
                        }
                        wandb.log(perf_dict)
                # TODO (elmc): evaluate!
                # if it % self.opt.eval_every_e == 0 and rank == 0:
                #     self.eval_mode()
                    # print(f"noise shape {self.real_noise.shape}")
                    # print(f"real noise: {self.real_noise}")
                    # print(f"fake noise: {self.fake_noise}")
                    # save real noise
                    # noise_path = f"{self.opt.noise_dir}/{epoch}_{i}.npy"
                    # np.save(noise_path, self.real_noise.cpu().numpy())
                if it % self.opt.save_latest == 0 and rank == 0:
                    self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it)

            if rank == 0:
                self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it)

            if epoch % self.opt.save_every_e == 0 and rank == 0:
                self.save(pjoin(self.opt.model_dir, 'ckpt_e%03d.tar'%(epoch)),
                            epoch, total_it=it)