Spaces:
Sleeping
Sleeping
# Text-driven Motion Generation | |
<!-- TOC --> | |
- [Installation](#installation) | |
- [Training](#prepare-environment) | |
- [Acknowledgement](#acknowledgement) | |
<!-- TOC --> | |
## Installation | |
Please refer to [install.md](install.md) for detailed installation. | |
## Training | |
Due to the requirement of a large batchsize, we highly recommend you to use DDP training. A slurm-based script is as below: | |
```shell | |
PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \ | |
srun -p ${PARTITION} -n8 --gres=gpu:8 -u \ | |
python -u tools/train.py \ | |
--name kit_baseline_ddp_8gpu_8layers_1000 \ | |
--batch_size 128 \ | |
--times 200 \ | |
--num_epochs 50 \ | |
--dataset_name kit \ | |
--distributed | |
``` | |
Besides, you can train the model on multi-GPUs with DataParallel: | |
```shell | |
PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \ | |
python -u tools/train.py \ | |
--name kit_baseline_dp_2gpu_8layers_1000 \ | |
--batch_size 128 \ | |
--times 50 \ | |
--num_epochs 50 \ | |
--dataset_name kit \ | |
--num_layers 8 \ | |
--diffusion_steps 1000 \ | |
--data_parallel \ | |
--gpu_id 0 1 | |
``` | |
Otherwise, you can run the training code on a single GPU like: | |
```shell | |
PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \ | |
python -u tools/train.py \ | |
--name kit_baseline_1gpu_8layers_1000 \ | |
--batch_size 128 \ | |
--times 25 \ | |
--num_epochs 50 \ | |
--dataset_name kit | |
``` | |
Here, `times` means the duplication times of the original dataset. To retain the number of iterations, you can set `times` to 25 for 1 GPU, 50 for 2 GPUs, 100 for 4 GPUs, and 200 for 8 GPUs. | |
## Evaluation | |
```shell | |
# GPU_ID indicates which gpu you want to use | |
python -u tools/evaluation.py checkpoints/kit/kit_motiondiffuse/opt.txt GPU_ID | |
# Or you can omit this option and use cpu for evaluation | |
python -u tools/evaluation.py checkpoints/kit/kit_motiondiffuse/opt.txt | |
``` | |
## Visualization | |
You can visualize human motion with the given language description and the expected motion length. We also provide a [Colab Demo](https://colab.research.google.com/drive/1Dp6VsZp2ozKuu9ccMmsDjyij_vXfCYb3?usp=sharing) and a [Hugging Face Demo](https://huggingface.co/spaces/mingyuan/MotionDiffuse) for your convenience. | |
```shell | |
# Currently we only support visualization of models trained on the HumanML3D dataset. | |
# Motion length can not be larger than 196, which is the maximum length during training | |
# You can omit `gpu_id` to run visualization on your CPU | |
# Optionally, you can store the xyz coordinates of each joint to `npy_path`. The shape of motion data is (T, 22, 3), where T denotes the motion length, 22 is the number of joints. | |
python -u tools/visualization.py \ | |
--opt_path checkpoints/t2m/t2m_motiondiffuse/opt.txt \ | |
--text "a person is jumping" \ | |
--motion_length 60 \ | |
--result_path "test_sample.gif" \ | |
--npy_path "test_sample.npy" \ | |
--gpu_id 0 | |
``` | |
Here are some visualization examples. The motion lengths are shown in the title of animations. | |
<table> | |
<tr> | |
<td><img src="../figures/gallery_t2m/gen_00.gif" width="100%"/></td> | |
<td><img src="../figures/gallery_t2m/gen_01.gif" width="100%"/></td> | |
<td><img src="../figures/gallery_t2m/gen_02.gif" width="100%"/></td> | |
<td><img src="../figures/gallery_t2m/gen_03.gif" width="100%"/></td> | |
</tr> | |
<tr> | |
<td><img src="../figures/gallery_t2m/gen_04.gif" width="100%"/></td> | |
<td><img src="../figures/gallery_t2m/gen_05.gif" width="100%"/></td> | |
<td><img src="../figures/gallery_t2m/gen_06.gif" width="100%"/></td> | |
<td><img src="../figures/gallery_t2m/gen_07.gif" width="100%"/></td> | |
</tr> | |
</table> | |
**Note:** You may install `matplotlib==3.3.1` to support visualization here. | |
## Acknowledgement | |
This code is developed on top of [Generating Diverse and Natural 3D Human Motions from Text](https://github.com/EricGuo5513/text-to-motion) |