File size: 2,590 Bytes
0c4b135
5c2f8ce
 
80b26db
21d73b8
 
80b26db
21d73b8
 
 
 
6fc805b
5c2f8ce
98e1cb0
d133fb5
 
4dec23b
d133fb5
21d73b8
5c2f8ce
6fc805b
 
 
 
 
 
 
21d73b8
6fc805b
0c4b135
21d73b8
 
 
0c4b135
 
 
03113eb
0c4b135
 
21d73b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c4b135
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from transformers import AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoTokenizer, PegasusForConditionalGeneration, PegasusTokenizer, pipeline
import gradio as grad
import ast

# mdl_name = "deepset/roberta-base-squad2"
# my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name)

# model_translate_name = 'danhsf/m2m100_418M-finetuned-kde4-en-to-pt_BR'
# model_translate = AutoModelForSeq2SeqLM.from_pretrained(model_translate_name)
# model_translate_token = AutoTokenizer.from_pretrained(model_translate_name)
# translate_pipeline = pipeline('translation', model=model_translate_name)

def answer_question(question,context):
    text= "{"+"'question': '"+question+"','context': '"+context+"'}"
    di=ast.literal_eval(text)
    response = my_pipeline(di)
    print('response', response)
    return response
#grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch()


def translate(text):
    inputs = model_translate_token(text, return_tensor='pt')
    translate_output = model_translate.generate(**inputs)
    response = model_translate_token(translate_output[0], skip_special_tokens=True)
    #response = translate_pipeline(text)
    return response
# grad.Interface(translate, inputs=['text',], outputs='text').launch()


# mdl_name = "google/pegasus-xsum"
# pegasus_tkn = PegasusTokenizer.from_pretrained(mdl_name)
# mdl = PegasusForConditionalGeneration.from_pretrained(mdl_name)

def summarize(text):
    tokens = pegasus_tkn(text, truncation=True, padding="longest", return_tensors="pt")
    txt_summary = mdl.generate(**tokens, num_return_sequences=5, max_length=200, temperature=1.5,num_beams=10)
    response = pegasus_tkn.batch_decode(txt_summary, skip_special_tokens=True)
    return response
    
# txt=grad.Textbox(lines=10, label="English", placeholder="English Text here")
# out=grad.Textbox(lines=10, label="Summary")
# grad.Interface(summarize, inputs=txt, outputs=out).launch()


from transformers import pipeline
import gradio as grad
zero_shot_classifier = pipeline("zero-shot-classification")
def classify(text,labels):
    classifer_labels = labels.split(",")
    #["software", "politics", "love", "movies", "emergency", "advertisment","sports"]
    response = zero_shot_classifier(text,classifer_labels)
    return response
txt=grad.Textbox(lines=1, label="English", placeholder="text to be classified")
labels=grad.Textbox(lines=1, label="Labels", placeholder="comma separated labels")
out=grad.Textbox(lines=1, label="Classification")
grad.Interface(classify, inputs=[txt,labels], outputs=out).launch()