Spaces:
Sleeping
Sleeping
Commit
·
07c7708
1
Parent(s):
21d73b8
Update app.py
Browse files
app.py
CHANGED
@@ -42,17 +42,34 @@ def summarize(text):
|
|
42 |
# out=grad.Textbox(lines=10, label="Summary")
|
43 |
# grad.Interface(summarize, inputs=txt, outputs=out).launch()
|
44 |
|
45 |
-
|
46 |
-
from transformers import pipeline
|
47 |
-
import gradio as grad
|
48 |
-
zero_shot_classifier = pipeline("zero-shot-classification")
|
49 |
def classify(text,labels):
|
50 |
classifer_labels = labels.split(",")
|
51 |
#["software", "politics", "love", "movies", "emergency", "advertisment","sports"]
|
52 |
response = zero_shot_classifier(text,classifer_labels)
|
53 |
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
txt=grad.Textbox(lines=1, label="English", placeholder="text to be classified")
|
55 |
-
labels=grad.Textbox(lines=1, label="
|
56 |
-
out=grad.Textbox(lines=1, label="
|
57 |
grad.Interface(classify, inputs=[txt,labels], outputs=out).launch()
|
58 |
|
|
|
42 |
# out=grad.Textbox(lines=10, label="Summary")
|
43 |
# grad.Interface(summarize, inputs=txt, outputs=out).launch()
|
44 |
|
45 |
+
# ZeroShotClassification using pipeline
|
46 |
+
# from transformers import pipeline
|
47 |
+
# import gradio as grad
|
48 |
+
# zero_shot_classifier = pipeline("zero-shot-classification")
|
49 |
def classify(text,labels):
|
50 |
classifer_labels = labels.split(",")
|
51 |
#["software", "politics", "love", "movies", "emergency", "advertisment","sports"]
|
52 |
response = zero_shot_classifier(text,classifer_labels)
|
53 |
return response
|
54 |
+
# txt=grad.Textbox(lines=1, label="English", placeholder="text to be classified")
|
55 |
+
# labels=grad.Textbox(lines=1, label="Labels", placeholder="comma separated labels")
|
56 |
+
# out=grad.Textbox(lines=1, label="Classification")
|
57 |
+
# grad.Interface(classify, inputs=[txt,labels], outputs=out).launch()
|
58 |
+
|
59 |
+
# Text classification using BartForSequenceClassification
|
60 |
+
from transformers import BartForSequenceClassification, BartTokenizer
|
61 |
+
import gradio as grad
|
62 |
+
bart_tkn = BartTokenizer.from_pretrained('facebook/bart-large-mnli')
|
63 |
+
mdl = BartForSequenceClassification.from_pretrained('facebook/bart-large-mnli')
|
64 |
+
def classify(text,label):
|
65 |
+
tkn_ids = bart_tkn.encode(text, label, return_tensors='pt')
|
66 |
+
tkn_lgts = mdl(tkn_ids)[0]
|
67 |
+
entail_contra_tkn_lgts = tkn_lgts[:,[0,2]]
|
68 |
+
probab = entail_contra_tkn_lgts.softmax(dim=1)
|
69 |
+
response = probab[:,1].item() * 100
|
70 |
+
return response
|
71 |
txt=grad.Textbox(lines=1, label="English", placeholder="text to be classified")
|
72 |
+
labels=grad.Textbox(lines=1, label="Label", placeholder="Input a Label")
|
73 |
+
out=grad.Textbox(lines=1, label="Probablity of label being true is")
|
74 |
grad.Interface(classify, inputs=[txt,labels], outputs=out).launch()
|
75 |
|