Spaces:
Sleeping
Sleeping
Commit
·
220d18f
1
Parent(s):
07c7708
Update app.py
Browse files
app.py
CHANGED
@@ -57,10 +57,10 @@ def classify(text,labels):
|
|
57 |
# grad.Interface(classify, inputs=[txt,labels], outputs=out).launch()
|
58 |
|
59 |
# Text classification using BartForSequenceClassification
|
60 |
-
from transformers import BartForSequenceClassification, BartTokenizer
|
61 |
-
import gradio as grad
|
62 |
-
bart_tkn = BartTokenizer.from_pretrained('facebook/bart-large-mnli')
|
63 |
-
mdl = BartForSequenceClassification.from_pretrained('facebook/bart-large-mnli')
|
64 |
def classify(text,label):
|
65 |
tkn_ids = bart_tkn.encode(text, label, return_tensors='pt')
|
66 |
tkn_lgts = mdl(tkn_ids)[0]
|
@@ -68,8 +68,21 @@ def classify(text,label):
|
|
68 |
probab = entail_contra_tkn_lgts.softmax(dim=1)
|
69 |
response = probab[:,1].item() * 100
|
70 |
return response
|
71 |
-
txt=grad.Textbox(lines=1, label="English", placeholder="text to be classified")
|
72 |
-
labels=grad.Textbox(lines=1, label="Label", placeholder="Input a Label")
|
73 |
-
out=grad.Textbox(lines=1, label="Probablity of label being true is")
|
74 |
-
grad.Interface(classify, inputs=[txt,labels], outputs=out).launch()
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
# grad.Interface(classify, inputs=[txt,labels], outputs=out).launch()
|
58 |
|
59 |
# Text classification using BartForSequenceClassification
|
60 |
+
# from transformers import BartForSequenceClassification, BartTokenizer
|
61 |
+
# import gradio as grad
|
62 |
+
# bart_tkn = BartTokenizer.from_pretrained('facebook/bart-large-mnli')
|
63 |
+
# mdl = BartForSequenceClassification.from_pretrained('facebook/bart-large-mnli')
|
64 |
def classify(text,label):
|
65 |
tkn_ids = bart_tkn.encode(text, label, return_tensors='pt')
|
66 |
tkn_lgts = mdl(tkn_ids)[0]
|
|
|
68 |
probab = entail_contra_tkn_lgts.softmax(dim=1)
|
69 |
response = probab[:,1].item() * 100
|
70 |
return response
|
71 |
+
# txt=grad.Textbox(lines=1, label="English", placeholder="text to be classified")
|
72 |
+
# labels=grad.Textbox(lines=1, label="Label", placeholder="Input a Label")
|
73 |
+
# out=grad.Textbox(lines=1, label="Probablity of label being true is")
|
74 |
+
# grad.Interface(classify, inputs=[txt,labels], outputs=out).launch()
|
75 |
|
76 |
+
# GPT2
|
77 |
+
from transformers import GPT2LMHeadModel,GPT2Tokenizer
|
78 |
+
import gradio as grad
|
79 |
+
mdl = GPT2LMHeadModel.from_pretrained('gpt2')
|
80 |
+
gpt2_tkn=GPT2Tokenizer.from_pretrained('gpt2')
|
81 |
+
def generate(starting_text):
|
82 |
+
tkn_ids = gpt2_tkn.encode(starting_text, return_tensors = 'pt')
|
83 |
+
gpt2_tensors = mdl.generate(tkn_ids)
|
84 |
+
response = gpt2_tensors
|
85 |
+
return response
|
86 |
+
txt=grad.Textbox(lines=1, label="English", placeholder="English Text here")
|
87 |
+
out=grad.Textbox(lines=1, label="Generated Tensors")
|
88 |
+
grad.Interface(generate, inputs=txt, outputs=out).launch()
|