eloi-goncalves commited on
Commit
79b9061
·
1 Parent(s): 92e2176

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -7
app.py CHANGED
@@ -91,13 +91,31 @@ def generate(starting_text):
91
  # grad.Interface(generate, inputs=txt, outputs=out).launch()
92
 
93
  #DistlGPT2
94
- from transformers import pipeline, set_seed
95
- import gradio as grad
96
- gpt2_pipe = pipeline('text-generation', model='distilgpt2')
97
- set_seed(42)
98
  def generateDistlGPT2(starting_text):
99
  response= gpt2_pipe(starting_text, max_length=20, num_return_sequences=5)
100
  return response
101
- txt=grad.Textbox(lines=1, label="English", placeholder="English Text here")
102
- out=grad.Textbox(lines=1, label="Generated Text")
103
- grad.Interface(generateDistlGPT2, inputs=txt, outputs=out).launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
  # grad.Interface(generate, inputs=txt, outputs=out).launch()
92
 
93
  #DistlGPT2
94
+ # from transformers import pipeline, set_seed
95
+ # import gradio as grad
96
+ # gpt2_pipe = pipeline('text-generation', model='distilgpt2')
97
+ # set_seed(42)
98
  def generateDistlGPT2(starting_text):
99
  response= gpt2_pipe(starting_text, max_length=20, num_return_sequences=5)
100
  return response
101
+ # txt=grad.Textbox(lines=1, label="English", placeholder="English Text here")
102
+ # out=grad.Textbox(lines=1, label="Generated Text")
103
+ # grad.Interface(generateDistlGPT2, inputs=txt, outputs=out).launch()
104
+
105
+ #Text Generation
106
+ from transformers import AutoModelWithLMHead, AutoTokenizer
107
+ import gradio as grad
108
+ text2text_tkn = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
109
+ mdl = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
110
+ def text2text(context,answer):
111
+ input_text = "answer: %s context: %s </s>" % (answer, context)
112
+ features = text2text_tkn ([input_text], return_tensors='pt')
113
+ output = mdl.generate(input_ids=features['input_ids'],
114
+ attention_mask=features['attention_mask'],
115
+ max_length=64)
116
+ response=text2text_tkn.decode(output[0])
117
+ return response
118
+ context=grad.Textbox(lines=10, label="English", placeholder="Context")
119
+ ans=grad.Textbox(lines=1, label="Answer")
120
+ out=grad.Textbox(lines=1, label="Genereated Question")
121
+ grad.Interface(text2text, inputs=[context,ans], outputs=out).launch()