Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
# Global variable to store history of attempts | |
history = [] | |
def predict_house_price(area): | |
"""Simple house price prediction based on area""" | |
# Using the simple formula: price = 0.1 * area (as per your slides) | |
price = 0.1 * area | |
return float(price) | |
def calculate_sse(x, y, m, b): | |
"""Calculate Sum of Squared Errors""" | |
y_predicted = m * x + b | |
sse = np.sum((y - y_predicted) ** 2) | |
return sse | |
def plot_regression(data, m, b): | |
try: | |
df = data if isinstance(data, pd.DataFrame) else pd.read_csv(data) | |
df['X'] = pd.to_numeric(df['X']) | |
df['Y'] = pd.to_numeric(df['Y']) | |
sse = calculate_sse(df['X'], df['Y'], m, b) | |
history.append({ | |
'm': m, | |
'b': b, | |
'sse': sse, | |
'color': plt.cm.rainbow(len(history) % 10 / 10) | |
}) | |
fig = plt.figure(figsize=(15, 6)) | |
# First subplot - Regression lines | |
ax1 = fig.add_subplot(121) | |
ax1.scatter(df['X'], df['Y'], color='black', alpha=0.5, label='Data points') | |
for i, attempt in enumerate(history): | |
x_range = np.linspace(df['X'].min(), df['X'].max(), 100) | |
y_line = attempt['m'] * x_range + attempt['b'] | |
label = f"m={attempt['m']:.1f}, b={attempt['b']:.1f}" | |
ax1.plot(x_range, y_line, color=attempt['color'], linewidth=2, | |
label=f"Try {i+1}: {label}") | |
ax1.set_xlabel('X') | |
ax1.set_ylabel('Y') | |
ax1.set_title('Linear Regression Attempts') | |
ax1.legend(bbox_to_anchor=(1.05, 1), loc='upper left') | |
# Second subplot - SSE values | |
ax2 = fig.add_subplot(122) | |
attempts = range(1, len(history) + 1) | |
sse_values = [attempt['sse'] for attempt in history] | |
colors = [attempt['color'] for attempt in history] | |
ax2.scatter(attempts, sse_values, c=colors) | |
ax2.plot(attempts, sse_values, 'gray', alpha=0.3) | |
for i, (attempt, sse) in enumerate(zip(attempts, sse_values)): | |
label = f"m={history[i]['m']:.1f}\nb={history[i]['b']:.1f}" | |
ax2.annotate(label, (attempt, sse), | |
xytext=(5, 5), textcoords='offset points') | |
ax2.set_xlabel('Attempt Number') | |
ax2.set_ylabel('Sum of Squared Errors') | |
ax2.set_title('SSE for Each Attempt') | |
ax2.grid(True, alpha=0.3) | |
plt.tight_layout() | |
plt.close() | |
return fig | |
except Exception as e: | |
print(f"Error: {e}") | |
return None | |
def clear_history(): | |
history.clear() | |
return None | |
# Create the Gradio interface with tabs | |
with gr.Blocks() as app: | |
gr.Markdown("# Linear Regression Learning Tools") | |
with gr.Tabs(): | |
# First Tab - House Price Prediction | |
with gr.TabItem("House Price Predictor"): | |
gr.Markdown(""" | |
# House Price Predictor | |
Enter the area of the house (in m²) to predict its price. | |
Based on the simple model: Price = 0.1 × Area | |
""") | |
with gr.Row(): | |
area_input = gr.Number( | |
label="House Area (m²)", | |
value=100 | |
) | |
price_output = gr.Number( | |
label="Predicted Price ($M)", | |
value=None | |
) | |
predict_button = gr.Button("Predict Price") | |
predict_button.click( | |
fn=predict_house_price, | |
inputs=area_input, | |
outputs=price_output | |
) | |
# Example table | |
gr.Markdown(""" | |
### Example Data Points: | |
| Area (m²) | Price ($M) | | |
|-----------|------------| | |
| 100 | 10 | | |
| 200 | 20 | | |
| 300 | 30 | | |
| 400 | 40 | | |
| 500 | 50 | | |
""") | |
# Second Tab - Regression Playground | |
with gr.TabItem("Understanding Squares Error"): | |
gr.Markdown(""" | |
# Understanding Squares Error | |
See how different lines affect the total squared error: | |
- The data shows the relationship between house area and price | |
- Try different slopes (m) and y-intercepts (b) for the line | |
- Watch how the squared errors (orange boxes) change | |
- Lower total squared error means a better fitting line | |
""") | |
with gr.Row(): | |
data_input = gr.Dataframe( | |
headers=["X", "Y"], | |
datatype=["number", "number"], | |
row_count=5, | |
col_count=2, | |
label="Dataset", | |
interactive=True, | |
value=[[100, 10], | |
[200, 20], | |
[300, 30], | |
[400, 40], | |
[500, 50]] | |
) | |
with gr.Column(): | |
m_slider = gr.Slider( | |
minimum=-10, | |
maximum=10, | |
value=1.0, | |
step=0.1, | |
label="Slope (m)", | |
) | |
b_slider = gr.Slider( | |
minimum=-10, | |
maximum=10, | |
value=0.0, | |
step=0.1, | |
label="Intercept (b)", | |
) | |
submit_button = gr.Button("Submit") | |
clear_button = gr.Button("Clear History") | |
plot_output = gr.Plot() | |
# Set up the event handlers | |
inputs = [data_input, m_slider, b_slider] | |
clear_button.click(fn=clear_history, inputs=None, outputs=plot_output) | |
submit_button.click(fn=plot_regression, inputs=inputs, outputs=plot_output) | |
if __name__ == "__main__": | |
app.launch(show_api=False) |