File size: 11,013 Bytes
2e34814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fec875
2e34814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import abc
import os
from argparse import Namespace
import wandb
import os.path
from criteria.localitly_regulizer import Space_Regulizer
import torch
from torchvision import transforms
from lpips import LPIPS
from training.projectors import w_projector  # w_plus_projector as w_projector
from configs import global_config, paths_config, hyperparameters
from criteria import l2_loss
from criteria import mask
from criteria import id_loss
from models.e4e.psp import pSp
from utils.log_utils import log_image_from_w
from utils.models_utils import toogle_grad, load_old_G
from torch_utils import misc
from torch_utils.ops import upfirdn2d
import numpy as np
import pickle
import copy


class BaseCoach:
    def __init__(self, data_loader, use_wandb):

        self.use_wandb = use_wandb
        self.data_loader = data_loader
        self.w_pivots = {}
        self.image_counter = 0

        if hyperparameters.first_inv_type == "w+":
            self.initilize_e4e()

        self.e4e_image_transform = transforms.Compose(
            [
                transforms.ToPILImage(),
                transforms.Resize((256, 256)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
            ]
        )

        # Initialize loss
        self.lpips_loss = (
            LPIPS(net=hyperparameters.lpips_type).to(global_config.device).eval()
        )

        self.id_loss = (
            id_loss.IDLoss(
                paths_config.ir_se50,
                official=False,
            )
            .to(global_config.device)
            .eval()
        )

        if hyperparameters.use_mask:
            self.mask = mask.Mask()

        self.restart_training()

        # Initialize checkpoint dir
        self.checkpoint_dir = paths_config.checkpoints_dir
        os.makedirs(self.checkpoint_dir, exist_ok=True)

    def restart_training(self):

        # Initialize networks
        self.G = load_old_G()

        toogle_grad(self.G, True)

        self.original_G = load_old_G()

        self.space_regulizer = Space_Regulizer(self.original_G, self.lpips_loss)
        self.optimizer = self.configure_optimizers()

    def get_inversion(self, w_path_dir, image_name, image):
        embedding_dir = f"{w_path_dir}/{paths_config.pti_results_keyword}/{image_name}"
        os.makedirs(embedding_dir, exist_ok=True)

        w_pivot = None

        if hyperparameters.use_last_w_pivots:
            w_pivot = self.load_inversions(w_path_dir, image_name)

        if not hyperparameters.use_last_w_pivots or w_pivot is None:
            w_pivot = self.calc_inversions(image, image_name)
            torch.save(w_pivot, f"{embedding_dir}/0.pt")

        w_pivot = w_pivot.to(global_config.device)
        return w_pivot

    def load_inversions(self, w_path_dir, image_name):
        if image_name in self.w_pivots:
            return self.w_pivots[image_name]

        if hyperparameters.first_inv_type == "w+":
            w_potential_path = (
                f"{w_path_dir}/{paths_config.e4e_results_keyword}/{image_name}/0.pt"
            )
        else:
            w_potential_path = (
                f"{w_path_dir}/{paths_config.pti_results_keyword}/{image_name}/0.pt"
            )
        if not os.path.isfile(w_potential_path):
            return None
        w = torch.load(w_potential_path, map_location=global_config.device).to(
            global_config.device
        )
        self.w_pivots[image_name] = w
        return w

    def calc_inversions(self, image, image_name):

        if hyperparameters.first_inv_type == "w+":
            w = self.get_e4e_inversion(image)

        else:
            id_image = torch.squeeze((image.to(global_config.device) + 1) / 2) * 255
            w = w_projector.project(
                self.G,
                id_image,
                device=torch.device(global_config.device),
                w_avg_samples=600,
                num_steps=hyperparameters.first_inv_steps,
                w_name=image_name,
                use_wandb=self.use_wandb,
            )

        return w

    @abc.abstractmethod
    def train(self):
        pass

    def configure_optimizers(self):

        #params = list(self.G.parameters())
        params = []
        # res = ["64", "32", "16", "8", "4"]
        for n, p in self.G.synthesis.named_parameters():

            #for r in res:
            #if r in n:
            if "rgb" not in n:
                params.append(p)

        # params += list(self.G.synthesis.parameters())
        optimizer = torch.optim.Adam(params, lr=hyperparameters.pti_learning_rate)

        return optimizer

    def calc_loss(
        self,
        generated_images,
        real_images,
        log_name,
        new_G,
        use_ball_holder,
        w_batch,
        rgbs,
    ):
        loss = 0.0
        if hyperparameters.use_mask:
            real_images, generated_images = self.mask(real_images, generated_images)
        if hyperparameters.pt_l2_lambda > 0:
            l2_loss_val = l2_loss.l2_loss(generated_images, real_images, gray=False)
            if self.use_wandb:
                wandb.log(
                    {f"MSE_loss_val_{log_name}": l2_loss_val.detach().cpu()},
                    step=global_config.training_step,
                )
            loss += l2_loss_val * hyperparameters.pt_l2_lambda
        if hyperparameters.pt_lpips_lambda > 0:
            loss_lpips = self.lpips_loss(real_images, generated_images)
            loss_lpips = torch.squeeze(loss_lpips)
            if self.use_wandb:
                wandb.log(
                    {f"LPIPS_loss_val_{log_name}": loss_lpips.detach().cpu()},
                    step=global_config.training_step,
                )
            loss += loss_lpips * hyperparameters.pt_lpips_lambda

        if hyperparameters.color_transfer_lambda > 0:

            for y in self.years:
                color_loss = self.color_losses[y](rgbs[y])
                """ print(
                    "Year: ",
                    y,
                    " Color Transfer:",
                    color_loss * hyperparameters.color_transfer_lambda,
                ) """
                loss += color_loss * hyperparameters.color_transfer_lambda
        if hyperparameters.id_lambda > 0:
            loss_id = self.id_loss(real_images, generated_images)
            loss_id = torch.squeeze(loss_id)

            loss += loss_id * hyperparameters.id_lambda
        if use_ball_holder and hyperparameters.use_locality_regularization:
            ball_holder_loss_val = self.space_regulizer.space_regulizer_loss(
                new_G, w_batch, use_wandb=self.use_wandb
            )
            loss += ball_holder_loss_val
        return loss, l2_loss_val, loss_lpips

    def synthesis_block(self, block, x, img, ws, force_fp32=False, fused_modconv=None):
        w_iter = iter(ws.unbind(dim=1))
        dtype = torch.float16 if block.use_fp16 and not force_fp32 else torch.float32
        memory_format = (
            torch.channels_last
            if block.channels_last and not force_fp32
            else torch.contiguous_format
        )
        if fused_modconv is None:
            with misc.suppress_tracer_warnings():  # this value will be treated as a constant
                fused_modconv = (not block.training) and (
                    dtype == torch.float32 or int(x.shape[0]) == 1
                )

        # Input.
        if block.in_channels == 0:
            x = block.const.to(dtype=dtype, memory_format=memory_format)
            x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1])
        else:
            misc.assert_shape(
                x,
                [None, block.in_channels, block.resolution // 2, block.resolution // 2],
            )
            x = x.to(dtype=dtype, memory_format=memory_format)

        # Main layers.
        if block.in_channels == 0:
            x = block.conv1(x, next(w_iter), fused_modconv=fused_modconv)
        elif block.architecture == "resnet":
            y = block.skip(x, gain=np.sqrt(0.5))
            x = block.conv0(x, next(w_iter), fused_modconv=fused_modconv)
            x = block.conv1(
                x,
                next(w_iter),
                fused_modconv=fused_modconv,
                gain=np.sqrt(0.5),
            )
            x = y.add_(x)
        else:
            x = block.conv0(x, next(w_iter), fused_modconv=fused_modconv)
            x = block.conv1(x, next(w_iter), fused_modconv=fused_modconv)

        # ToRGB.
        if img is not None:
            misc.assert_shape(
                img,
                [
                    None,
                    block.img_channels,
                    block.resolution // 2,
                    block.resolution // 2,
                ],
            )
            img = upfirdn2d.upsample2d(img, block.resample_filter)
        if block.is_last or block.architecture == "skip":
            y = block.torgb(x, next(w_iter), fused_modconv=fused_modconv)
            y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format)
            img = img.add_(y) if img is not None else y

        assert x.dtype == dtype
        assert img is None or img.dtype == torch.float32
        return x, img, y

    def forward(self, w):
        generated_images = self.G.synthesis(w, noise_mode="const", force_fp32=True)
        return generated_images

    def forward_sibling(self, G_sibling, w):
        block_ws = []
        rgbs = []
        ws = w.to(torch.float32)
        w_idx = 0
        for res in G_sibling.block_resolutions:
            block = getattr(G_sibling, f"b{res}")
            block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb))
            w_idx += block.num_conv

        x = img = None
        for res, cur_ws in zip(G_sibling.block_resolutions, block_ws):
            block = getattr(G_sibling, f"b{res}")
            x, img, rgb_mod = self.synthesis_block(block, x, img, cur_ws)
            # print(f"ToRGB: {res}", rgb_mod)
            rgbs.append(rgb_mod)
        return img, rgbs

    def initilize_e4e(self):
        ckpt = torch.load(paths_config.e4e, map_location="cpu")
        opts = ckpt["opts"]
        opts["batch_size"] = hyperparameters.train_batch_size
        opts["checkpoint_path"] = paths_config.e4e
        opts = Namespace(**opts)
        self.e4e_inversion_net = pSp(opts)
        self.e4e_inversion_net.eval()
        self.e4e_inversion_net = self.e4e_inversion_net.to(global_config.device)
        toogle_grad(self.e4e_inversion_net, False)

    def get_e4e_inversion(self, image):
        image = (image + 1) / 2
        new_image = self.e4e_image_transform(image[0]).to(global_config.device)
        _, w = self.e4e_inversion_net(
            new_image.unsqueeze(0),
            randomize_noise=False,
            return_latents=True,
            resize=False,
            input_code=False,
        )
        if self.use_wandb:
            log_image_from_w(w, self.G, "First e4e inversion")
        return w