faces-through-time / PTI /run_pti.py
echen01
add PTI
2e34814
raw
history blame
1.93 kB
from random import choice
from string import ascii_uppercase
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
import os
import sys
from configs import global_config, paths_config
import wandb
from training.coaches.multi_id_coach import MultiIDCoach
from training.coaches.single_id_coach import SingleIDCoach
from utils.ImagesDataset import ImagesDataset
def run_PTI(run_name="", use_wandb=False, use_multi_id_training=False):
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = global_config.cuda_visible_devices
if run_name == "":
global_config.run_name = "".join(choice(ascii_uppercase) for i in range(12))
else:
global_config.run_name = run_name
if use_wandb:
run = wandb.init(
project=paths_config.pti_results_keyword,
reinit=True,
name=global_config.run_name,
)
global_config.pivotal_training_steps = 1
global_config.training_step = 1
embedding_dir_path = f"{paths_config.embedding_base_dir}/{paths_config.input_data_id}/{paths_config.pti_results_keyword}"
os.makedirs(embedding_dir_path, exist_ok=True)
dataset = ImagesDataset(
paths_config.input_data_path,
transforms.Compose(
[
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
),
)
dataloader = DataLoader(dataset, batch_size=1, shuffle=False)
if use_multi_id_training:
coach = MultiIDCoach(dataloader, use_wandb)
else:
coach = SingleIDCoach(dataloader, use_wandb)
coach.train()
return global_config.run_name
if __name__ == "__main__":
run_name = f"pti_{paths_config.year}"
print(run_name)
run_PTI(run_name=run_name, use_wandb=False, use_multi_id_training=False)