faces-through-time / legacy.py
echen01
add app templtae
0513aaf
raw
history blame
15.6 kB
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import click
import pickle
import re
import copy
import numpy as np
import torch
import dnnlib
from torch_utils import misc
# ----------------------------------------------------------------------------
def load_network_pkl(f, force_fp16=False):
data = _LegacyUnpickler(f).load()
# Legacy TensorFlow pickle => convert.
if (
isinstance(data, tuple)
and len(data) == 3
and all(isinstance(net, _TFNetworkStub) for net in data)
):
tf_G, tf_D, tf_Gs = data
G = convert_tf_generator(tf_G)
D = convert_tf_discriminator(tf_D)
G_ema = convert_tf_generator(tf_Gs)
data = dict(G=G, D=D, G_ema=G_ema)
# Add missing fields.
if "training_set_kwargs" not in data:
data["training_set_kwargs"] = None
if "augment_pipe" not in data:
data["augment_pipe"] = None
# Validate contents.
assert isinstance(data["G"], torch.nn.Module)
assert isinstance(data["D"], torch.nn.Module)
assert isinstance(data["G_ema"], torch.nn.Module)
assert isinstance(data["training_set_kwargs"], (dict, type(None)))
assert isinstance(data["augment_pipe"], (torch.nn.Module, type(None)))
# Force FP16.
if force_fp16:
for key in ["G", "D", "G_ema"]:
old = data[key]
kwargs = copy.deepcopy(old.init_kwargs)
if key.startswith("G"):
kwargs.synthesis_kwargs = dnnlib.EasyDict(
kwargs.get("synthesis_kwargs", {})
)
kwargs.synthesis_kwargs.num_fp16_res = 4
kwargs.synthesis_kwargs.conv_clamp = 256
if key.startswith("D"):
kwargs.num_fp16_res = 4
kwargs.conv_clamp = 256
if kwargs != old.init_kwargs:
new = type(old)(**kwargs).eval().requires_grad_(False)
misc.copy_params_and_buffers(old, new, require_all=True)
data[key] = new
return data
# ----------------------------------------------------------------------------
class _TFNetworkStub(dnnlib.EasyDict):
pass
class _LegacyUnpickler(pickle.Unpickler):
def find_class(self, module, name):
if module == "dnnlib.tflib.network" and name == "Network":
return _TFNetworkStub
return super().find_class(module, name)
# ----------------------------------------------------------------------------
def _collect_tf_params(tf_net):
# pylint: disable=protected-access
tf_params = dict()
def recurse(prefix, tf_net):
for name, value in tf_net.variables:
tf_params[prefix + name] = value
for name, comp in tf_net.components.items():
recurse(prefix + name + "/", comp)
recurse("", tf_net)
return tf_params
# ----------------------------------------------------------------------------
def _populate_module_params(module, *patterns):
for name, tensor in misc.named_params_and_buffers(module):
found = False
value = None
for pattern, value_fn in zip(patterns[0::2], patterns[1::2]):
match = re.fullmatch(pattern, name)
if match:
found = True
if value_fn is not None:
value = value_fn(*match.groups())
break
try:
assert found
if value is not None:
tensor.copy_(torch.from_numpy(np.array(value)))
except:
print(name, list(tensor.shape))
raise
# ----------------------------------------------------------------------------
def convert_tf_generator(tf_G):
if tf_G.version < 4:
raise ValueError("TensorFlow pickle version too low")
# Collect kwargs.
tf_kwargs = tf_G.static_kwargs
known_kwargs = set()
def kwarg(tf_name, default=None, none=None):
known_kwargs.add(tf_name)
val = tf_kwargs.get(tf_name, default)
return val if val is not None else none
# Convert kwargs.
kwargs = dnnlib.EasyDict(
z_dim=kwarg("latent_size", 512),
c_dim=kwarg("label_size", 0),
w_dim=kwarg("dlatent_size", 512),
img_resolution=kwarg("resolution", 1024),
img_channels=kwarg("num_channels", 3),
mapping_kwargs=dnnlib.EasyDict(
num_layers=kwarg("mapping_layers", 8),
embed_features=kwarg("label_fmaps", None),
layer_features=kwarg("mapping_fmaps", None),
activation=kwarg("mapping_nonlinearity", "lrelu"),
lr_multiplier=kwarg("mapping_lrmul", 0.01),
w_avg_beta=kwarg("w_avg_beta", 0.995, none=1),
),
synthesis_kwargs=dnnlib.EasyDict(
channel_base=kwarg("fmap_base", 16384) * 2,
channel_max=kwarg("fmap_max", 512),
num_fp16_res=kwarg("num_fp16_res", 0),
conv_clamp=kwarg("conv_clamp", None),
architecture=kwarg("architecture", "skip"),
resample_filter=kwarg("resample_kernel", [1, 3, 3, 1]),
use_noise=kwarg("use_noise", True),
activation=kwarg("nonlinearity", "lrelu"),
),
)
# Check for unknown kwargs.
kwarg("truncation_psi")
kwarg("truncation_cutoff")
kwarg("style_mixing_prob")
kwarg("structure")
unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs)
if len(unknown_kwargs) > 0:
raise ValueError("Unknown TensorFlow kwarg", unknown_kwargs[0])
# Collect params.
tf_params = _collect_tf_params(tf_G)
for name, value in list(tf_params.items()):
match = re.fullmatch(r"ToRGB_lod(\d+)/(.*)", name)
if match:
r = kwargs.img_resolution // (2 ** int(match.group(1)))
tf_params[f"{r}x{r}/ToRGB/{match.group(2)}"] = value
kwargs.synthesis.kwargs.architecture = "orig"
# for name, value in tf_params.items(): print(f'{name:<50s}{list(value.shape)}')
# Convert params.
from training import networks
G = networks.Generator(**kwargs).eval().requires_grad_(False)
# pylint: disable=unnecessary-lambda
_populate_module_params(
G,
r"mapping\.w_avg",
lambda: tf_params[f"dlatent_avg"],
r"mapping\.embed\.weight",
lambda: tf_params[f"mapping/LabelEmbed/weight"].transpose(),
r"mapping\.embed\.bias",
lambda: tf_params[f"mapping/LabelEmbed/bias"],
r"mapping\.fc(\d+)\.weight",
lambda i: tf_params[f"mapping/Dense{i}/weight"].transpose(),
r"mapping\.fc(\d+)\.bias",
lambda i: tf_params[f"mapping/Dense{i}/bias"],
r"synthesis\.b4\.const",
lambda: tf_params[f"synthesis/4x4/Const/const"][0],
r"synthesis\.b4\.conv1\.weight",
lambda: tf_params[f"synthesis/4x4/Conv/weight"].transpose(3, 2, 0, 1),
r"synthesis\.b4\.conv1\.bias",
lambda: tf_params[f"synthesis/4x4/Conv/bias"],
r"synthesis\.b4\.conv1\.noise_const",
lambda: tf_params[f"synthesis/noise0"][0, 0],
r"synthesis\.b4\.conv1\.noise_strength",
lambda: tf_params[f"synthesis/4x4/Conv/noise_strength"],
r"synthesis\.b4\.conv1\.affine\.weight",
lambda: tf_params[f"synthesis/4x4/Conv/mod_weight"].transpose(),
r"synthesis\.b4\.conv1\.affine\.bias",
lambda: tf_params[f"synthesis/4x4/Conv/mod_bias"] + 1,
r"synthesis\.b(\d+)\.conv0\.weight",
lambda r: tf_params[f"synthesis/{r}x{r}/Conv0_up/weight"][::-1, ::-1].transpose(
3, 2, 0, 1
),
r"synthesis\.b(\d+)\.conv0\.bias",
lambda r: tf_params[f"synthesis/{r}x{r}/Conv0_up/bias"],
r"synthesis\.b(\d+)\.conv0\.noise_const",
lambda r: tf_params[f"synthesis/noise{int(np.log2(int(r)))*2-5}"][0, 0],
r"synthesis\.b(\d+)\.conv0\.noise_strength",
lambda r: tf_params[f"synthesis/{r}x{r}/Conv0_up/noise_strength"],
r"synthesis\.b(\d+)\.conv0\.affine\.weight",
lambda r: tf_params[f"synthesis/{r}x{r}/Conv0_up/mod_weight"].transpose(),
r"synthesis\.b(\d+)\.conv0\.affine\.bias",
lambda r: tf_params[f"synthesis/{r}x{r}/Conv0_up/mod_bias"] + 1,
r"synthesis\.b(\d+)\.conv1\.weight",
lambda r: tf_params[f"synthesis/{r}x{r}/Conv1/weight"].transpose(3, 2, 0, 1),
r"synthesis\.b(\d+)\.conv1\.bias",
lambda r: tf_params[f"synthesis/{r}x{r}/Conv1/bias"],
r"synthesis\.b(\d+)\.conv1\.noise_const",
lambda r: tf_params[f"synthesis/noise{int(np.log2(int(r)))*2-4}"][0, 0],
r"synthesis\.b(\d+)\.conv1\.noise_strength",
lambda r: tf_params[f"synthesis/{r}x{r}/Conv1/noise_strength"],
r"synthesis\.b(\d+)\.conv1\.affine\.weight",
lambda r: tf_params[f"synthesis/{r}x{r}/Conv1/mod_weight"].transpose(),
r"synthesis\.b(\d+)\.conv1\.affine\.bias",
lambda r: tf_params[f"synthesis/{r}x{r}/Conv1/mod_bias"] + 1,
r"synthesis\.b(\d+)\.torgb\.weight",
lambda r: tf_params[f"synthesis/{r}x{r}/ToRGB/weight"].transpose(3, 2, 0, 1),
r"synthesis\.b(\d+)\.torgb\.bias",
lambda r: tf_params[f"synthesis/{r}x{r}/ToRGB/bias"],
r"synthesis\.b(\d+)\.torgb\.affine\.weight",
lambda r: tf_params[f"synthesis/{r}x{r}/ToRGB/mod_weight"].transpose(),
r"synthesis\.b(\d+)\.torgb\.affine\.bias",
lambda r: tf_params[f"synthesis/{r}x{r}/ToRGB/mod_bias"] + 1,
r"synthesis\.b(\d+)\.skip\.weight",
lambda r: tf_params[f"synthesis/{r}x{r}/Skip/weight"][::-1, ::-1].transpose(
3, 2, 0, 1
),
r".*\.resample_filter",
None,
)
return G
# ----------------------------------------------------------------------------
def convert_tf_discriminator(tf_D):
if tf_D.version < 4:
raise ValueError("TensorFlow pickle version too low")
# Collect kwargs.
tf_kwargs = tf_D.static_kwargs
known_kwargs = set()
def kwarg(tf_name, default=None):
known_kwargs.add(tf_name)
return tf_kwargs.get(tf_name, default)
# Convert kwargs.
kwargs = dnnlib.EasyDict(
c_dim=kwarg("label_size", 0),
img_resolution=kwarg("resolution", 1024),
img_channels=kwarg("num_channels", 3),
architecture=kwarg("architecture", "resnet"),
channel_base=kwarg("fmap_base", 16384) * 2,
channel_max=kwarg("fmap_max", 512),
num_fp16_res=kwarg("num_fp16_res", 0),
conv_clamp=kwarg("conv_clamp", None),
cmap_dim=kwarg("mapping_fmaps", None),
block_kwargs=dnnlib.EasyDict(
activation=kwarg("nonlinearity", "lrelu"),
resample_filter=kwarg("resample_kernel", [1, 3, 3, 1]),
freeze_layers=kwarg("freeze_layers", 0),
),
mapping_kwargs=dnnlib.EasyDict(
num_layers=kwarg("mapping_layers", 0),
embed_features=kwarg("mapping_fmaps", None),
layer_features=kwarg("mapping_fmaps", None),
activation=kwarg("nonlinearity", "lrelu"),
lr_multiplier=kwarg("mapping_lrmul", 0.1),
),
epilogue_kwargs=dnnlib.EasyDict(
mbstd_group_size=kwarg("mbstd_group_size", None),
mbstd_num_channels=kwarg("mbstd_num_features", 1),
activation=kwarg("nonlinearity", "lrelu"),
),
)
# Check for unknown kwargs.
kwarg("structure")
unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs)
if len(unknown_kwargs) > 0:
raise ValueError("Unknown TensorFlow kwarg", unknown_kwargs[0])
# Collect params.
tf_params = _collect_tf_params(tf_D)
for name, value in list(tf_params.items()):
match = re.fullmatch(r"FromRGB_lod(\d+)/(.*)", name)
if match:
r = kwargs.img_resolution // (2 ** int(match.group(1)))
tf_params[f"{r}x{r}/FromRGB/{match.group(2)}"] = value
kwargs.architecture = "orig"
# for name, value in tf_params.items(): print(f'{name:<50s}{list(value.shape)}')
# Convert params.
from training import networks
D = networks.Discriminator(**kwargs).eval().requires_grad_(False)
# pylint: disable=unnecessary-lambda
_populate_module_params(
D,
r"b(\d+)\.fromrgb\.weight",
lambda r: tf_params[f"{r}x{r}/FromRGB/weight"].transpose(3, 2, 0, 1),
r"b(\d+)\.fromrgb\.bias",
lambda r: tf_params[f"{r}x{r}/FromRGB/bias"],
r"b(\d+)\.conv(\d+)\.weight",
lambda r, i: tf_params[
f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/weight'
].transpose(3, 2, 0, 1),
r"b(\d+)\.conv(\d+)\.bias",
lambda r, i: tf_params[f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/bias'],
r"b(\d+)\.skip\.weight",
lambda r: tf_params[f"{r}x{r}/Skip/weight"].transpose(3, 2, 0, 1),
r"mapping\.embed\.weight",
lambda: tf_params[f"LabelEmbed/weight"].transpose(),
r"mapping\.embed\.bias",
lambda: tf_params[f"LabelEmbed/bias"],
r"mapping\.fc(\d+)\.weight",
lambda i: tf_params[f"Mapping{i}/weight"].transpose(),
r"mapping\.fc(\d+)\.bias",
lambda i: tf_params[f"Mapping{i}/bias"],
r"b4\.conv\.weight",
lambda: tf_params[f"4x4/Conv/weight"].transpose(3, 2, 0, 1),
r"b4\.conv\.bias",
lambda: tf_params[f"4x4/Conv/bias"],
r"b4\.fc\.weight",
lambda: tf_params[f"4x4/Dense0/weight"].transpose(),
r"b4\.fc\.bias",
lambda: tf_params[f"4x4/Dense0/bias"],
r"b4\.out\.weight",
lambda: tf_params[f"Output/weight"].transpose(),
r"b4\.out\.bias",
lambda: tf_params[f"Output/bias"],
r".*\.resample_filter",
None,
)
return D
# ----------------------------------------------------------------------------
@click.command()
@click.option("--source", help="Input pickle", required=True, metavar="PATH")
@click.option("--dest", help="Output pickle", required=True, metavar="PATH")
@click.option(
"--force-fp16",
help="Force the networks to use FP16",
type=bool,
default=False,
metavar="BOOL",
show_default=True,
)
def convert_network_pickle(source, dest, force_fp16):
"""Convert legacy network pickle into the native PyTorch format.
The tool is able to load the main network configurations exported using the TensorFlow version of StyleGAN2 or StyleGAN2-ADA.
It does not support e.g. StyleGAN2-ADA comparison methods, StyleGAN2 configs A-D, or StyleGAN1 networks.
Example:
\b
python legacy.py \\
--source=https://nvlabs-fi-cdn.nvidia.com/stylegan2/networks/stylegan2-cat-config-f.pkl \\
--dest=stylegan2-cat-config-f.pkl
"""
print(f'Loading "{source}"...')
with dnnlib.util.open_url(source) as f:
data = load_network_pkl(f, force_fp16=force_fp16)
print(f'Saving "{dest}"...')
with open(dest, "wb") as f:
pickle.dump(data, f)
print("Done.")
# ----------------------------------------------------------------------------
if __name__ == "__main__":
convert_network_pickle() # pylint: disable=no-value-for-parameter
# ----------------------------------------------------------------------------