Spaces:
Runtime error
Runtime error
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | |
# | |
# NVIDIA CORPORATION and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION is strictly prohibited. | |
import click | |
import pickle | |
import re | |
import copy | |
import numpy as np | |
import torch | |
import dnnlib | |
from torch_utils import misc | |
# ---------------------------------------------------------------------------- | |
def load_network_pkl(f, force_fp16=False): | |
data = _LegacyUnpickler(f).load() | |
# Legacy TensorFlow pickle => convert. | |
if ( | |
isinstance(data, tuple) | |
and len(data) == 3 | |
and all(isinstance(net, _TFNetworkStub) for net in data) | |
): | |
tf_G, tf_D, tf_Gs = data | |
G = convert_tf_generator(tf_G) | |
D = convert_tf_discriminator(tf_D) | |
G_ema = convert_tf_generator(tf_Gs) | |
data = dict(G=G, D=D, G_ema=G_ema) | |
# Add missing fields. | |
if "training_set_kwargs" not in data: | |
data["training_set_kwargs"] = None | |
if "augment_pipe" not in data: | |
data["augment_pipe"] = None | |
# Validate contents. | |
assert isinstance(data["G"], torch.nn.Module) | |
assert isinstance(data["D"], torch.nn.Module) | |
assert isinstance(data["G_ema"], torch.nn.Module) | |
assert isinstance(data["training_set_kwargs"], (dict, type(None))) | |
assert isinstance(data["augment_pipe"], (torch.nn.Module, type(None))) | |
# Force FP16. | |
if force_fp16: | |
for key in ["G", "D", "G_ema"]: | |
old = data[key] | |
kwargs = copy.deepcopy(old.init_kwargs) | |
if key.startswith("G"): | |
kwargs.synthesis_kwargs = dnnlib.EasyDict( | |
kwargs.get("synthesis_kwargs", {}) | |
) | |
kwargs.synthesis_kwargs.num_fp16_res = 4 | |
kwargs.synthesis_kwargs.conv_clamp = 256 | |
if key.startswith("D"): | |
kwargs.num_fp16_res = 4 | |
kwargs.conv_clamp = 256 | |
if kwargs != old.init_kwargs: | |
new = type(old)(**kwargs).eval().requires_grad_(False) | |
misc.copy_params_and_buffers(old, new, require_all=True) | |
data[key] = new | |
return data | |
# ---------------------------------------------------------------------------- | |
class _TFNetworkStub(dnnlib.EasyDict): | |
pass | |
class _LegacyUnpickler(pickle.Unpickler): | |
def find_class(self, module, name): | |
if module == "dnnlib.tflib.network" and name == "Network": | |
return _TFNetworkStub | |
return super().find_class(module, name) | |
# ---------------------------------------------------------------------------- | |
def _collect_tf_params(tf_net): | |
# pylint: disable=protected-access | |
tf_params = dict() | |
def recurse(prefix, tf_net): | |
for name, value in tf_net.variables: | |
tf_params[prefix + name] = value | |
for name, comp in tf_net.components.items(): | |
recurse(prefix + name + "/", comp) | |
recurse("", tf_net) | |
return tf_params | |
# ---------------------------------------------------------------------------- | |
def _populate_module_params(module, *patterns): | |
for name, tensor in misc.named_params_and_buffers(module): | |
found = False | |
value = None | |
for pattern, value_fn in zip(patterns[0::2], patterns[1::2]): | |
match = re.fullmatch(pattern, name) | |
if match: | |
found = True | |
if value_fn is not None: | |
value = value_fn(*match.groups()) | |
break | |
try: | |
assert found | |
if value is not None: | |
tensor.copy_(torch.from_numpy(np.array(value))) | |
except: | |
print(name, list(tensor.shape)) | |
raise | |
# ---------------------------------------------------------------------------- | |
def convert_tf_generator(tf_G): | |
if tf_G.version < 4: | |
raise ValueError("TensorFlow pickle version too low") | |
# Collect kwargs. | |
tf_kwargs = tf_G.static_kwargs | |
known_kwargs = set() | |
def kwarg(tf_name, default=None, none=None): | |
known_kwargs.add(tf_name) | |
val = tf_kwargs.get(tf_name, default) | |
return val if val is not None else none | |
# Convert kwargs. | |
kwargs = dnnlib.EasyDict( | |
z_dim=kwarg("latent_size", 512), | |
c_dim=kwarg("label_size", 0), | |
w_dim=kwarg("dlatent_size", 512), | |
img_resolution=kwarg("resolution", 1024), | |
img_channels=kwarg("num_channels", 3), | |
mapping_kwargs=dnnlib.EasyDict( | |
num_layers=kwarg("mapping_layers", 8), | |
embed_features=kwarg("label_fmaps", None), | |
layer_features=kwarg("mapping_fmaps", None), | |
activation=kwarg("mapping_nonlinearity", "lrelu"), | |
lr_multiplier=kwarg("mapping_lrmul", 0.01), | |
w_avg_beta=kwarg("w_avg_beta", 0.995, none=1), | |
), | |
synthesis_kwargs=dnnlib.EasyDict( | |
channel_base=kwarg("fmap_base", 16384) * 2, | |
channel_max=kwarg("fmap_max", 512), | |
num_fp16_res=kwarg("num_fp16_res", 0), | |
conv_clamp=kwarg("conv_clamp", None), | |
architecture=kwarg("architecture", "skip"), | |
resample_filter=kwarg("resample_kernel", [1, 3, 3, 1]), | |
use_noise=kwarg("use_noise", True), | |
activation=kwarg("nonlinearity", "lrelu"), | |
), | |
) | |
# Check for unknown kwargs. | |
kwarg("truncation_psi") | |
kwarg("truncation_cutoff") | |
kwarg("style_mixing_prob") | |
kwarg("structure") | |
unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs) | |
if len(unknown_kwargs) > 0: | |
raise ValueError("Unknown TensorFlow kwarg", unknown_kwargs[0]) | |
# Collect params. | |
tf_params = _collect_tf_params(tf_G) | |
for name, value in list(tf_params.items()): | |
match = re.fullmatch(r"ToRGB_lod(\d+)/(.*)", name) | |
if match: | |
r = kwargs.img_resolution // (2 ** int(match.group(1))) | |
tf_params[f"{r}x{r}/ToRGB/{match.group(2)}"] = value | |
kwargs.synthesis.kwargs.architecture = "orig" | |
# for name, value in tf_params.items(): print(f'{name:<50s}{list(value.shape)}') | |
# Convert params. | |
from training import networks | |
G = networks.Generator(**kwargs).eval().requires_grad_(False) | |
# pylint: disable=unnecessary-lambda | |
_populate_module_params( | |
G, | |
r"mapping\.w_avg", | |
lambda: tf_params[f"dlatent_avg"], | |
r"mapping\.embed\.weight", | |
lambda: tf_params[f"mapping/LabelEmbed/weight"].transpose(), | |
r"mapping\.embed\.bias", | |
lambda: tf_params[f"mapping/LabelEmbed/bias"], | |
r"mapping\.fc(\d+)\.weight", | |
lambda i: tf_params[f"mapping/Dense{i}/weight"].transpose(), | |
r"mapping\.fc(\d+)\.bias", | |
lambda i: tf_params[f"mapping/Dense{i}/bias"], | |
r"synthesis\.b4\.const", | |
lambda: tf_params[f"synthesis/4x4/Const/const"][0], | |
r"synthesis\.b4\.conv1\.weight", | |
lambda: tf_params[f"synthesis/4x4/Conv/weight"].transpose(3, 2, 0, 1), | |
r"synthesis\.b4\.conv1\.bias", | |
lambda: tf_params[f"synthesis/4x4/Conv/bias"], | |
r"synthesis\.b4\.conv1\.noise_const", | |
lambda: tf_params[f"synthesis/noise0"][0, 0], | |
r"synthesis\.b4\.conv1\.noise_strength", | |
lambda: tf_params[f"synthesis/4x4/Conv/noise_strength"], | |
r"synthesis\.b4\.conv1\.affine\.weight", | |
lambda: tf_params[f"synthesis/4x4/Conv/mod_weight"].transpose(), | |
r"synthesis\.b4\.conv1\.affine\.bias", | |
lambda: tf_params[f"synthesis/4x4/Conv/mod_bias"] + 1, | |
r"synthesis\.b(\d+)\.conv0\.weight", | |
lambda r: tf_params[f"synthesis/{r}x{r}/Conv0_up/weight"][::-1, ::-1].transpose( | |
3, 2, 0, 1 | |
), | |
r"synthesis\.b(\d+)\.conv0\.bias", | |
lambda r: tf_params[f"synthesis/{r}x{r}/Conv0_up/bias"], | |
r"synthesis\.b(\d+)\.conv0\.noise_const", | |
lambda r: tf_params[f"synthesis/noise{int(np.log2(int(r)))*2-5}"][0, 0], | |
r"synthesis\.b(\d+)\.conv0\.noise_strength", | |
lambda r: tf_params[f"synthesis/{r}x{r}/Conv0_up/noise_strength"], | |
r"synthesis\.b(\d+)\.conv0\.affine\.weight", | |
lambda r: tf_params[f"synthesis/{r}x{r}/Conv0_up/mod_weight"].transpose(), | |
r"synthesis\.b(\d+)\.conv0\.affine\.bias", | |
lambda r: tf_params[f"synthesis/{r}x{r}/Conv0_up/mod_bias"] + 1, | |
r"synthesis\.b(\d+)\.conv1\.weight", | |
lambda r: tf_params[f"synthesis/{r}x{r}/Conv1/weight"].transpose(3, 2, 0, 1), | |
r"synthesis\.b(\d+)\.conv1\.bias", | |
lambda r: tf_params[f"synthesis/{r}x{r}/Conv1/bias"], | |
r"synthesis\.b(\d+)\.conv1\.noise_const", | |
lambda r: tf_params[f"synthesis/noise{int(np.log2(int(r)))*2-4}"][0, 0], | |
r"synthesis\.b(\d+)\.conv1\.noise_strength", | |
lambda r: tf_params[f"synthesis/{r}x{r}/Conv1/noise_strength"], | |
r"synthesis\.b(\d+)\.conv1\.affine\.weight", | |
lambda r: tf_params[f"synthesis/{r}x{r}/Conv1/mod_weight"].transpose(), | |
r"synthesis\.b(\d+)\.conv1\.affine\.bias", | |
lambda r: tf_params[f"synthesis/{r}x{r}/Conv1/mod_bias"] + 1, | |
r"synthesis\.b(\d+)\.torgb\.weight", | |
lambda r: tf_params[f"synthesis/{r}x{r}/ToRGB/weight"].transpose(3, 2, 0, 1), | |
r"synthesis\.b(\d+)\.torgb\.bias", | |
lambda r: tf_params[f"synthesis/{r}x{r}/ToRGB/bias"], | |
r"synthesis\.b(\d+)\.torgb\.affine\.weight", | |
lambda r: tf_params[f"synthesis/{r}x{r}/ToRGB/mod_weight"].transpose(), | |
r"synthesis\.b(\d+)\.torgb\.affine\.bias", | |
lambda r: tf_params[f"synthesis/{r}x{r}/ToRGB/mod_bias"] + 1, | |
r"synthesis\.b(\d+)\.skip\.weight", | |
lambda r: tf_params[f"synthesis/{r}x{r}/Skip/weight"][::-1, ::-1].transpose( | |
3, 2, 0, 1 | |
), | |
r".*\.resample_filter", | |
None, | |
) | |
return G | |
# ---------------------------------------------------------------------------- | |
def convert_tf_discriminator(tf_D): | |
if tf_D.version < 4: | |
raise ValueError("TensorFlow pickle version too low") | |
# Collect kwargs. | |
tf_kwargs = tf_D.static_kwargs | |
known_kwargs = set() | |
def kwarg(tf_name, default=None): | |
known_kwargs.add(tf_name) | |
return tf_kwargs.get(tf_name, default) | |
# Convert kwargs. | |
kwargs = dnnlib.EasyDict( | |
c_dim=kwarg("label_size", 0), | |
img_resolution=kwarg("resolution", 1024), | |
img_channels=kwarg("num_channels", 3), | |
architecture=kwarg("architecture", "resnet"), | |
channel_base=kwarg("fmap_base", 16384) * 2, | |
channel_max=kwarg("fmap_max", 512), | |
num_fp16_res=kwarg("num_fp16_res", 0), | |
conv_clamp=kwarg("conv_clamp", None), | |
cmap_dim=kwarg("mapping_fmaps", None), | |
block_kwargs=dnnlib.EasyDict( | |
activation=kwarg("nonlinearity", "lrelu"), | |
resample_filter=kwarg("resample_kernel", [1, 3, 3, 1]), | |
freeze_layers=kwarg("freeze_layers", 0), | |
), | |
mapping_kwargs=dnnlib.EasyDict( | |
num_layers=kwarg("mapping_layers", 0), | |
embed_features=kwarg("mapping_fmaps", None), | |
layer_features=kwarg("mapping_fmaps", None), | |
activation=kwarg("nonlinearity", "lrelu"), | |
lr_multiplier=kwarg("mapping_lrmul", 0.1), | |
), | |
epilogue_kwargs=dnnlib.EasyDict( | |
mbstd_group_size=kwarg("mbstd_group_size", None), | |
mbstd_num_channels=kwarg("mbstd_num_features", 1), | |
activation=kwarg("nonlinearity", "lrelu"), | |
), | |
) | |
# Check for unknown kwargs. | |
kwarg("structure") | |
unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs) | |
if len(unknown_kwargs) > 0: | |
raise ValueError("Unknown TensorFlow kwarg", unknown_kwargs[0]) | |
# Collect params. | |
tf_params = _collect_tf_params(tf_D) | |
for name, value in list(tf_params.items()): | |
match = re.fullmatch(r"FromRGB_lod(\d+)/(.*)", name) | |
if match: | |
r = kwargs.img_resolution // (2 ** int(match.group(1))) | |
tf_params[f"{r}x{r}/FromRGB/{match.group(2)}"] = value | |
kwargs.architecture = "orig" | |
# for name, value in tf_params.items(): print(f'{name:<50s}{list(value.shape)}') | |
# Convert params. | |
from training import networks | |
D = networks.Discriminator(**kwargs).eval().requires_grad_(False) | |
# pylint: disable=unnecessary-lambda | |
_populate_module_params( | |
D, | |
r"b(\d+)\.fromrgb\.weight", | |
lambda r: tf_params[f"{r}x{r}/FromRGB/weight"].transpose(3, 2, 0, 1), | |
r"b(\d+)\.fromrgb\.bias", | |
lambda r: tf_params[f"{r}x{r}/FromRGB/bias"], | |
r"b(\d+)\.conv(\d+)\.weight", | |
lambda r, i: tf_params[ | |
f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/weight' | |
].transpose(3, 2, 0, 1), | |
r"b(\d+)\.conv(\d+)\.bias", | |
lambda r, i: tf_params[f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/bias'], | |
r"b(\d+)\.skip\.weight", | |
lambda r: tf_params[f"{r}x{r}/Skip/weight"].transpose(3, 2, 0, 1), | |
r"mapping\.embed\.weight", | |
lambda: tf_params[f"LabelEmbed/weight"].transpose(), | |
r"mapping\.embed\.bias", | |
lambda: tf_params[f"LabelEmbed/bias"], | |
r"mapping\.fc(\d+)\.weight", | |
lambda i: tf_params[f"Mapping{i}/weight"].transpose(), | |
r"mapping\.fc(\d+)\.bias", | |
lambda i: tf_params[f"Mapping{i}/bias"], | |
r"b4\.conv\.weight", | |
lambda: tf_params[f"4x4/Conv/weight"].transpose(3, 2, 0, 1), | |
r"b4\.conv\.bias", | |
lambda: tf_params[f"4x4/Conv/bias"], | |
r"b4\.fc\.weight", | |
lambda: tf_params[f"4x4/Dense0/weight"].transpose(), | |
r"b4\.fc\.bias", | |
lambda: tf_params[f"4x4/Dense0/bias"], | |
r"b4\.out\.weight", | |
lambda: tf_params[f"Output/weight"].transpose(), | |
r"b4\.out\.bias", | |
lambda: tf_params[f"Output/bias"], | |
r".*\.resample_filter", | |
None, | |
) | |
return D | |
# ---------------------------------------------------------------------------- | |
def convert_network_pickle(source, dest, force_fp16): | |
"""Convert legacy network pickle into the native PyTorch format. | |
The tool is able to load the main network configurations exported using the TensorFlow version of StyleGAN2 or StyleGAN2-ADA. | |
It does not support e.g. StyleGAN2-ADA comparison methods, StyleGAN2 configs A-D, or StyleGAN1 networks. | |
Example: | |
\b | |
python legacy.py \\ | |
--source=https://nvlabs-fi-cdn.nvidia.com/stylegan2/networks/stylegan2-cat-config-f.pkl \\ | |
--dest=stylegan2-cat-config-f.pkl | |
""" | |
print(f'Loading "{source}"...') | |
with dnnlib.util.open_url(source) as f: | |
data = load_network_pkl(f, force_fp16=force_fp16) | |
print(f'Saving "{dest}"...') | |
with open(dest, "wb") as f: | |
pickle.dump(data, f) | |
print("Done.") | |
# ---------------------------------------------------------------------------- | |
if __name__ == "__main__": | |
convert_network_pickle() # pylint: disable=no-value-for-parameter | |
# ---------------------------------------------------------------------------- | |