File size: 5,499 Bytes
4a9ac34
 
 
 
 
 
1ad33b7
 
 
 
 
 
 
 
4a9ac34
1ad33b7
4a9ac34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ad33b7
4a9ac34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
import pandas as pd
import random
from transformers import AutoTokenizer, AutoModelForCausalLM
import plotly.graph_objects as go

# Attempt to load the GPT-2 model
try:
    tokenizer = AutoTokenizer.from_pretrained("gpt2")
    model = AutoModelForCausalLM.from_pretrained("gpt2")
except ImportError as e:
    tokenizer = None
    model = None
    print(f"Warning: {e}. GPT-2 model won't be used in this session.")

# Functionality remains the same; no GPT-2 model inference is used
def analyze_energy_data(energy_data, location, language):
    appliances = {}
    total_kwh = 0
    peak_hours_rate = 20
    off_peak_hours_rate = 12
    benchmarks = {"AC": 400, "Refrigerator": 200, "Lighting": 150, "Fan": 100}
    alerts = []

    try:
        for line in energy_data.strip().split("\n"):
            appliance, kwh = line.split(":")
            kwh_value = float(kwh.strip().split(" ")[0])
            appliances[appliance.strip()] = kwh_value
            total_kwh += kwh_value

            if appliance.strip() in benchmarks and kwh_value > benchmarks[appliance.strip()]:
                alert_message = (
                    f"Your {appliance.strip()} usage exceeds the limit by "
                    f"{kwh_value - benchmarks[appliance.strip()]:.2f} kWh."
                )
                alerts.append(alert_message)

    except Exception:
        return (
            "Error: Enter data in the correct format (e.g., AC: 500 kWh).",
            "",
            "",
            "",
            "",
            "",
            "",
            0.0
        )

    total_bill = total_kwh * peak_hours_rate
    optimized_bill = sum(
        appliances[app] * (off_peak_hours_rate if app in ["AC", "Refrigerator"] else peak_hours_rate)
        for app in appliances
    )
    savings = total_bill - optimized_bill
    carbon_emissions = total_kwh * 0.707  # Approx kg of CO2 per kWh
    weather_tips = (
        f"Considering high temperatures in {location}, keep windows closed during peak heat hours to optimize cooling."
        if "Lahore" in location
        else "Check local weather to optimize energy usage."
    )

    return (
        f"Your current bill is PKR {total_bill:.2f}, potentially saving PKR {savings:.2f}.",
        "\n".join([f"{appliance}: {random.choice(['Use during off-peak hours.', 'Turn off when not in use.'])}" for appliance in appliances]),
        weather_tips,
        "\n".join(alerts),
        f"Your carbon footprint: {carbon_emissions:.2f} kg of CO2. Consider using renewable energy.",
        f"AI Recommendation: Optimize usage of AC and lighting based on peak hours to reduce costs and emissions.",
        savings  # Return savings for ROI calculation
    )

# Other functions remain unchanged

def build_ui():
    with gr.Blocks() as demo:
        with gr.Row():
            home_size = gr.Slider(minimum=500, maximum=5000, step=100, label="Home Size (sq ft)", value=1200)
            location = gr.Textbox(label="Location (City)", placeholder="Enter your city...", info="Specify the city to get weather-based tips.")
            energy_data = gr.Textbox(
                label="Energy Data (Appliance: kWh)",
                placeholder="e.g., AC: 500 kWh\nLighting: 120 kWh\nRefrigerator: 150 kWh",
                lines=5,
                info="Enter your appliances and their energy usage."
            )
            language = gr.Radio(choices=["English", "Urdu"], label="Language")

        with gr.Row():
            user_name = gr.Textbox(label="Your Name", placeholder="Enter your name...", info="Provide your name to track performance.")
            reduction_percentage = gr.Slider(minimum=0, maximum=50, step=1, label="Energy Reduction (%)", value=10)
            initial_investment = gr.Number(label="Initial Investment (PKR)", value=10000)

        fetch_data_button = gr.Button("Fetch Smart Device Data")
        fetch_data_output = gr.Textbox(label="Smart Device Data", interactive=False)

        fetch_data_button.click(fetch_smart_device_data, inputs=[], outputs=fetch_data_output)

        submit_button = gr.Button("Analyze", variant="primary", elem_id="submit-button")

        with gr.Row():
            energy_output = gr.Textbox(label="Energy Consumption Analysis", interactive=False)
            tips_output = gr.Textbox(label="Optimization Tips", interactive=False)
            weather_output = gr.Textbox(label="Weather-specific Tips", interactive=False)
            alerts_output = gr.Textbox(label="Alerts", interactive=False)
            ai_recommendations = gr.Textbox(label="AI Recommendations", interactive=False)

        with gr.Row():
            carbon_output = gr.Textbox(label="Carbon Footprint", interactive=False)
            energy_chart = gr.Plot(label="Energy Visualization")

        with gr.Row():
            leaderboard_output = gr.Textbox(label="Leaderboard", interactive=False)
            badge_output = gr.Textbox(label="Your Badge", interactive=False)

        with gr.Row():
            roi_output = gr.Textbox(label="Return on Investment (ROI)", interactive=False)

        submit_button.click(
            chatbot_interface,
            inputs=[home_size, location, energy_data, language, user_name, reduction_percentage, initial_investment],
            outputs=[energy_output, tips_output, weather_output, alerts_output, carbon_output, ai_recommendations, energy_chart, leaderboard_output, badge_output, roi_output]
        )

    return demo

demo = build_ui()
demo.launch()