File size: 7,962 Bytes
4a9ac34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import gradio as gr
import pandas as pd
import random
from transformers import AutoTokenizer, AutoModelForCausalLM
import plotly.graph_objects as go
# Load GPT-2 model from Hugging Face
tokenizer = AutoTokenizer.from_pretrained("gpt2")
model = AutoModelForCausalLM.from_pretrained("gpt2")
# Analyze energy data and provide consumption details, recommendations, and weather tips
def analyze_energy_data(energy_data, location, language):
appliances = {}
total_kwh = 0
peak_hours_rate = 20
off_peak_hours_rate = 12
benchmarks = {"AC": 400, "Refrigerator": 200, "Lighting": 150, "Fan": 100}
alerts = []
try:
for line in energy_data.strip().split("\n"):
appliance, kwh = line.split(":")
kwh_value = float(kwh.strip().split(" ")[0])
appliances[appliance.strip()] = kwh_value
total_kwh += kwh_value
if appliance.strip() in benchmarks and kwh_value > benchmarks[appliance.strip()]:
alert_message = (
f"Your {appliance.strip()} usage exceeds the limit by "
f"{kwh_value - benchmarks[appliance.strip()]:.2f} kWh."
)
alerts.append(alert_message)
except Exception:
return (
"Error: Enter data in the correct format (e.g., AC: 500 kWh).",
"",
"",
"",
"",
"",
"",
0.0
)
total_bill = total_kwh * peak_hours_rate
optimized_bill = sum(
appliances[app] * (off_peak_hours_rate if app in ["AC", "Refrigerator"] else peak_hours_rate)
for app in appliances
)
savings = total_bill - optimized_bill
carbon_emissions = total_kwh * 0.707 # Approx kg of CO2 per kWh
weather_tips = (
f"Considering high temperatures in {location}, keep windows closed during peak heat hours to optimize cooling."
if "Lahore" in location
else "Check local weather to optimize energy usage."
)
return (
f"Your current bill is PKR {total_bill:.2f}, potentially saving PKR {savings:.2f}.",
"\n".join([f"{appliance}: {random.choice(['Use during off-peak hours.', 'Turn off when not in use.'])}" for appliance in appliances]),
weather_tips,
"\n".join(alerts),
f"Your carbon footprint: {carbon_emissions:.2f} kg of CO2. Consider using renewable energy.",
f"AI Recommendation: Optimize usage of AC and lighting based on peak hours to reduce costs and emissions.",
savings # Return savings for ROI calculation
)
# Gamification: Leaderboard and Badges
leaderboard = {"User1": 30, "User2": 25, "User3": 20}
def update_leaderboard(user_name, reduction_percentage):
leaderboard[user_name] = leaderboard.get(user_name, 0) + reduction_percentage
sorted_leaderboard = sorted(leaderboard.items(), key=lambda x: x[1], reverse=True)
leaderboard_text = "\n".join([f"{i+1}. {user}: {points} points" for i, (user, points) in enumerate(sorted_leaderboard)])
badge = "Gold" if reduction_percentage > 30 else "Silver" if reduction_percentage > 20 else "Bronze"
return leaderboard_text, f"Badge earned: {badge}"
# IoT-based Smart Device Integration (Simulated)
def fetch_smart_device_data():
data = {
"AC": random.randint(350, 500),
"Lighting": random.randint(100, 200),
"Refrigerator": random.randint(180, 250),
}
return "\n".join([f"{k}: {v} kWh" for k, v in data.items()])
# Customized Energy Visualization: Interactive Bar Chart
def visualize_energy_data(appliances):
df = pd.DataFrame(appliances.items(), columns=["Appliance", "Energy (kWh)"])
fig = go.Figure(data=[go.Bar(
x=df["Appliance"],
y=df["Energy (kWh)"],
marker=dict(color=['#FF6347' if x > 300 else '#32CD32' for x in df["Energy (kWh)"]]) # High usage appliances in red, low in green
)])
fig.update_layout(
title="Appliance-wise Energy Usage",
xaxis_title="Appliance",
yaxis_title="Energy (kWh)",
hovermode='x unified',
)
return fig
# ROI Calculator
def calculate_roi(initial_investment, savings):
try:
roi = (savings / initial_investment) * 100
except ZeroDivisionError:
roi = 0.0
return f"Your ROI is {roi:.2f}% based on an initial investment of {initial_investment} PKR and savings of {savings:.2f} PKR."
# Chatbot Interface
def chatbot_interface(home_size, location, energy_data, language, user_name, reduction_percentage, initial_investment):
energy_analysis, tips, weather_tips, alerts, carbon_output, ai_recommendation, savings = analyze_energy_data(energy_data, location, language)
appliances = {
appliance: float(kwh.strip(" kWh"))
for appliance, kwh in [line.split(":") for line in energy_data.strip().split("\n")]
}
energy_chart = visualize_energy_data(appliances)
leaderboard_text, badge = update_leaderboard(user_name, reduction_percentage)
roi_output = calculate_roi(initial_investment, savings)
return energy_analysis, tips, weather_tips, alerts, carbon_output, ai_recommendation, energy_chart, leaderboard_text, badge, roi_output
# Build UI with Gradio
def build_ui():
with gr.Blocks() as demo:
with gr.Row():
home_size = gr.Slider(minimum=500, maximum=5000, step=100, label="Home Size (sq ft)", value=1200)
location = gr.Textbox(label="Location (City)", placeholder="Enter your city...", info="Specify the city to get weather-based tips.")
energy_data = gr.Textbox(
label="Energy Data (Appliance: kWh)",
placeholder="e.g., AC: 500 kWh\nLighting: 120 kWh\nRefrigerator: 150 kWh",
lines=5,
info="Enter your appliances and their energy usage."
)
language = gr.Radio(choices=["English", "Urdu"], label="Language")
with gr.Row():
user_name = gr.Textbox(label="Your Name", placeholder="Enter your name...", info="Provide your name to track performance.")
reduction_percentage = gr.Slider(minimum=0, maximum=50, step=1, label="Energy Reduction (%)", value=10)
initial_investment = gr.Number(label="Initial Investment (PKR)", value=10000)
fetch_data_button = gr.Button("Fetch Smart Device Data")
fetch_data_output = gr.Textbox(label="Smart Device Data", interactive=False)
fetch_data_button.click(fetch_smart_device_data, inputs=[], outputs=fetch_data_output)
submit_button = gr.Button("Analyze", variant="primary", elem_id="submit-button")
with gr.Row():
energy_output = gr.Textbox(label="Energy Consumption Analysis", interactive=False)
tips_output = gr.Textbox(label="Optimization Tips", interactive=False)
weather_output = gr.Textbox(label="Weather-specific Tips", interactive=False)
alerts_output = gr.Textbox(label="Alerts", interactive=False)
ai_recommendations = gr.Textbox(label="AI Recommendations", interactive=False)
with gr.Row():
carbon_output = gr.Textbox(label="Carbon Footprint", interactive=False)
energy_chart = gr.Plot(label="Energy Visualization")
with gr.Row():
leaderboard_output = gr.Textbox(label="Leaderboard", interactive=False)
badge_output = gr.Textbox(label="Your Badge", interactive=False)
with gr.Row():
roi_output = gr.Textbox(label="Return on Investment (ROI)", interactive=False)
submit_button.click(
chatbot_interface,
inputs=[home_size, location, energy_data, language, user_name, reduction_percentage, initial_investment],
outputs=[energy_output, tips_output, weather_output, alerts_output, carbon_output, ai_recommendations, energy_chart, leaderboard_output, badge_output, roi_output]
)
return demo
demo = build_ui()
demo.launch()
|