File size: 7,962 Bytes
4a9ac34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import gradio as gr
import pandas as pd
import random
from transformers import AutoTokenizer, AutoModelForCausalLM
import plotly.graph_objects as go

# Load GPT-2 model from Hugging Face
tokenizer = AutoTokenizer.from_pretrained("gpt2")
model = AutoModelForCausalLM.from_pretrained("gpt2")

# Analyze energy data and provide consumption details, recommendations, and weather tips
def analyze_energy_data(energy_data, location, language):
    appliances = {}
    total_kwh = 0
    peak_hours_rate = 20
    off_peak_hours_rate = 12
    benchmarks = {"AC": 400, "Refrigerator": 200, "Lighting": 150, "Fan": 100}
    alerts = []

    try:
        for line in energy_data.strip().split("\n"):
            appliance, kwh = line.split(":")
            kwh_value = float(kwh.strip().split(" ")[0])
            appliances[appliance.strip()] = kwh_value
            total_kwh += kwh_value

            if appliance.strip() in benchmarks and kwh_value > benchmarks[appliance.strip()]:
                alert_message = (
                    f"Your {appliance.strip()} usage exceeds the limit by "
                    f"{kwh_value - benchmarks[appliance.strip()]:.2f} kWh."
                )
                alerts.append(alert_message)

    except Exception:
        return (
            "Error: Enter data in the correct format (e.g., AC: 500 kWh).",
            "",
            "",
            "",
            "",
            "",
            "",
            0.0
        )

    total_bill = total_kwh * peak_hours_rate
    optimized_bill = sum(
        appliances[app] * (off_peak_hours_rate if app in ["AC", "Refrigerator"] else peak_hours_rate)
        for app in appliances
    )
    savings = total_bill - optimized_bill
    carbon_emissions = total_kwh * 0.707  # Approx kg of CO2 per kWh
    weather_tips = (
        f"Considering high temperatures in {location}, keep windows closed during peak heat hours to optimize cooling."
        if "Lahore" in location
        else "Check local weather to optimize energy usage."
    )

    return (
        f"Your current bill is PKR {total_bill:.2f}, potentially saving PKR {savings:.2f}.",
        "\n".join([f"{appliance}: {random.choice(['Use during off-peak hours.', 'Turn off when not in use.'])}" for appliance in appliances]),
        weather_tips,
        "\n".join(alerts),
        f"Your carbon footprint: {carbon_emissions:.2f} kg of CO2. Consider using renewable energy.",
        f"AI Recommendation: Optimize usage of AC and lighting based on peak hours to reduce costs and emissions.",
        savings  # Return savings for ROI calculation
    )

# Gamification: Leaderboard and Badges
leaderboard = {"User1": 30, "User2": 25, "User3": 20}

def update_leaderboard(user_name, reduction_percentage):
    leaderboard[user_name] = leaderboard.get(user_name, 0) + reduction_percentage
    sorted_leaderboard = sorted(leaderboard.items(), key=lambda x: x[1], reverse=True)
    leaderboard_text = "\n".join([f"{i+1}. {user}: {points} points" for i, (user, points) in enumerate(sorted_leaderboard)])
    badge = "Gold" if reduction_percentage > 30 else "Silver" if reduction_percentage > 20 else "Bronze"
    return leaderboard_text, f"Badge earned: {badge}"

# IoT-based Smart Device Integration (Simulated)
def fetch_smart_device_data():
    data = {
        "AC": random.randint(350, 500),
        "Lighting": random.randint(100, 200),
        "Refrigerator": random.randint(180, 250),
    }
    return "\n".join([f"{k}: {v} kWh" for k, v in data.items()])

# Customized Energy Visualization: Interactive Bar Chart
def visualize_energy_data(appliances):
    df = pd.DataFrame(appliances.items(), columns=["Appliance", "Energy (kWh)"])
    fig = go.Figure(data=[go.Bar(
        x=df["Appliance"],
        y=df["Energy (kWh)"],
        marker=dict(color=['#FF6347' if x > 300 else '#32CD32' for x in df["Energy (kWh)"]])  # High usage appliances in red, low in green
    )])
    fig.update_layout(
        title="Appliance-wise Energy Usage",
        xaxis_title="Appliance",
        yaxis_title="Energy (kWh)",
        hovermode='x unified',
    )
    return fig

# ROI Calculator
def calculate_roi(initial_investment, savings):
    try:
        roi = (savings / initial_investment) * 100
    except ZeroDivisionError:
        roi = 0.0
    return f"Your ROI is {roi:.2f}% based on an initial investment of {initial_investment} PKR and savings of {savings:.2f} PKR."

# Chatbot Interface
def chatbot_interface(home_size, location, energy_data, language, user_name, reduction_percentage, initial_investment):
    energy_analysis, tips, weather_tips, alerts, carbon_output, ai_recommendation, savings = analyze_energy_data(energy_data, location, language)
    appliances = {
        appliance: float(kwh.strip(" kWh"))
        for appliance, kwh in [line.split(":") for line in energy_data.strip().split("\n")]
    }
    energy_chart = visualize_energy_data(appliances)
    leaderboard_text, badge = update_leaderboard(user_name, reduction_percentage)
    roi_output = calculate_roi(initial_investment, savings)
    return energy_analysis, tips, weather_tips, alerts, carbon_output, ai_recommendation, energy_chart, leaderboard_text, badge, roi_output

# Build UI with Gradio
def build_ui():
    with gr.Blocks() as demo:
        with gr.Row():
            home_size = gr.Slider(minimum=500, maximum=5000, step=100, label="Home Size (sq ft)", value=1200)
            location = gr.Textbox(label="Location (City)", placeholder="Enter your city...", info="Specify the city to get weather-based tips.")
            energy_data = gr.Textbox(
                label="Energy Data (Appliance: kWh)",
                placeholder="e.g., AC: 500 kWh\nLighting: 120 kWh\nRefrigerator: 150 kWh",
                lines=5,
                info="Enter your appliances and their energy usage."
            )
            language = gr.Radio(choices=["English", "Urdu"], label="Language")

        with gr.Row():
            user_name = gr.Textbox(label="Your Name", placeholder="Enter your name...", info="Provide your name to track performance.")
            reduction_percentage = gr.Slider(minimum=0, maximum=50, step=1, label="Energy Reduction (%)", value=10)
            initial_investment = gr.Number(label="Initial Investment (PKR)", value=10000)

        fetch_data_button = gr.Button("Fetch Smart Device Data")
        fetch_data_output = gr.Textbox(label="Smart Device Data", interactive=False)

        fetch_data_button.click(fetch_smart_device_data, inputs=[], outputs=fetch_data_output)

        submit_button = gr.Button("Analyze", variant="primary", elem_id="submit-button")

        with gr.Row():
            energy_output = gr.Textbox(label="Energy Consumption Analysis", interactive=False)
            tips_output = gr.Textbox(label="Optimization Tips", interactive=False)
            weather_output = gr.Textbox(label="Weather-specific Tips", interactive=False)
            alerts_output = gr.Textbox(label="Alerts", interactive=False)
            ai_recommendations = gr.Textbox(label="AI Recommendations", interactive=False)

        with gr.Row():
            carbon_output = gr.Textbox(label="Carbon Footprint", interactive=False)
            energy_chart = gr.Plot(label="Energy Visualization")

        with gr.Row():
            leaderboard_output = gr.Textbox(label="Leaderboard", interactive=False)
            badge_output = gr.Textbox(label="Your Badge", interactive=False)

        with gr.Row():
            roi_output = gr.Textbox(label="Return on Investment (ROI)", interactive=False)

        submit_button.click(
            chatbot_interface,
            inputs=[home_size, location, energy_data, language, user_name, reduction_percentage, initial_investment],
            outputs=[energy_output, tips_output, weather_output, alerts_output, carbon_output, ai_recommendations, energy_chart, leaderboard_output, badge_output, roi_output]
        )

    return demo

demo = build_ui()
demo.launch()