Spaces:
Sleeping
Sleeping
# app.py | |
import os | |
import streamlit as st | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chains import RetrievalQA | |
from langchain.llms import HuggingFacePipeline | |
from transformers import pipeline | |
from groq import Groq | |
import requests | |
from PyPDF2 import PdfReader | |
import io | |
# Set up API key for Groq API | |
GROQ_API_KEY = "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" | |
os.environ["GROQ_API_KEY"] = GROQ_API_KEY | |
# Initialize Groq API client | |
client = Groq(api_key=GROQ_API_KEY) | |
# Predefined PDF link | |
pdf_url = "https://drive.google.com/file/d/1P9InkDWyaybb8jR_xS4f4KsxTlYip8RA/view?usp=drive_link" | |
def extract_text_from_pdf(pdf_url): | |
"""Extract text from a PDF file given its Google Drive shared link.""" | |
# Extract file ID from the Google Drive link | |
file_id = pdf_url.split('/d/')[1].split('/view')[0] | |
download_url = f"https://drive.google.com/uc?export=download&id={file_id}" | |
response = requests.get(download_url) | |
if response.status_code == 200: | |
pdf_content = io.BytesIO(response.content) | |
reader = PdfReader(pdf_content) | |
text = "\n".join([page.extract_text() for page in reader.pages]) | |
return text | |
else: | |
st.error("Failed to download PDF.") | |
return "" | |
# Streamlit Interface | |
st.title("ASD Diagnosis Retrieval-Augmented Generation App") | |
st.info("Processing predefined PDF...") | |
extracted_text = extract_text_from_pdf(pdf_url) | |
if extracted_text: | |
st.success("Text extraction complete.") | |
# Preprocess text for embeddings | |
st.info("Generating embeddings...") | |
embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") | |
embeddings = embeddings_model.embed_documents([extracted_text]) | |
# Store embeddings in FAISS | |
st.info("Storing embeddings in FAISS...") | |
faiss_index = FAISS.from_texts([extracted_text], embeddings_model) | |
# Set up Hugging Face LLM pipeline | |
st.info("Setting up RAG pipeline...") | |
hf_pipeline = pipeline("text-generation", model="google/flan-t5-base", tokenizer="google/flan-t5-base") | |
llm = HuggingFacePipeline(pipeline=hf_pipeline) | |
retriever = faiss_index.as_retriever() | |
qa_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever) | |
# Query interface | |
st.success("RAG pipeline ready.") | |
user_query = st.text_input("Enter your query about ASD:") | |
if user_query: | |
st.info("Fetching response...") | |
response = qa_chain.run(user_query) | |
st.success(response) | |
else: | |
st.error("No text extracted from the PDF.") |