Spaces:
Build error
Build error
File size: 5,922 Bytes
bb4dfd1 20ec090 bb4dfd1 6f93304 bb4dfd1 6f93304 bb4dfd1 6f93304 bb4dfd1 6f93304 bb4dfd1 6f93304 bb4dfd1 6f93304 bb4dfd1 6f93304 bb4dfd1 6f93304 bb4dfd1 6f93304 bb4dfd1 6f93304 bb4dfd1 6f93304 bb4dfd1 6f93304 bb4dfd1 6f93304 bb4dfd1 6f93304 bb4dfd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import re
import functools
import requests
import pandas as pd
import plotly.express as px
import torch
import gradio as gr
from transformers import pipeline, Wav2Vec2ProcessorWithLM
from pyannote.audio import Pipeline
from librosa import load, resample
import whisperx
import re
alphabets= "([A-Za-z])"
prefixes = "(Mr|St|Mrs|Ms|Dr)[.]"
suffixes = "(Inc|Ltd|Jr|Sr|Co)"
starters = "(Mr|Mrs|Ms|Dr|He\s|She\s|It\s|They\s|Their\s|Our\s|We\s|But\s|However\s|That\s|This\s|Wherever)"
acronyms = "([A-Z][.][A-Z][.](?:[A-Z][.])?)"
websites = "[.](com|net|org|io|gov)"
def split_into_sentences(text):
text = " " + text + " "
text = text.replace("\n"," ")
text = re.sub(prefixes,"\\1<prd>",text)
text = re.sub(websites,"<prd>\\1",text)
if "Ph.D" in text: text = text.replace("Ph.D.","Ph<prd>D<prd>")
text = re.sub("\s" + alphabets + "[.] "," \\1<prd> ",text)
text = re.sub(acronyms+" "+starters,"\\1<stop> \\2",text)
text = re.sub(alphabets + "[.]" + alphabets + "[.]" + alphabets + "[.]","\\1<prd>\\2<prd>\\3<prd>",text)
text = re.sub(alphabets + "[.]" + alphabets + "[.]","\\1<prd>\\2<prd>",text)
text = re.sub(" "+suffixes+"[.] "+starters," \\1<stop> \\2",text)
text = re.sub(" "+suffixes+"[.]"," \\1<prd>",text)
text = re.sub(" " + alphabets + "[.]"," \\1<prd>",text)
if "”" in text: text = text.replace(".”","”.")
if "\"" in text: text = text.replace(".\"","\".")
if "!" in text: text = text.replace("!\"","\"!")
if "?" in text: text = text.replace("?\"","\"?")
text = text.replace(".",".<stop>")
text = text.replace("?","?<stop>")
text = text.replace("!","!<stop>")
text = text.replace("<prd>",".")
sentences = text.split("<stop>")
sentences = sentences[:-1]
sentences = [s.strip() for s in sentences]
return sentences
# display if the sentiment value is above these thresholds
thresholds = {"joy": 0.99,"anger": 0.95,"surprise": 0.95,"sadness": 0.98,"fear": 0.95,"love": 0.99,}
color_map = {"joy": "green","anger": "red","surprise": "yellow","sadness": "blue","fear": "orange","love": "purple",}
def create_fig(x_min, x_max, plot_sentences):
x, y = list(zip(*to_plot))
plot_df = pd.DataFrame(
data={
"x": x,
"y": y,
"sentence": plot_sentences,
}
)
fig = px.line(
plot_df,
x="x",
y="y",
hover_data={
"sentence": True,
"x": True,
"y": False,
},
labels={"x": "time (seconds)", "y": "sentiment"},
title=f"Customer sentiment over time",
markers=True,
)
fig = fig.update_yaxes(categoryorder="category ascending")
fig = fig.update_layout(
font=dict(
size=18,
),
xaxis_range=[x_min, x_max],
)
return fig
def sentiment(diarized, emotion_pipeline):
"""
diarized: a list of tuples. Each tuple has a string to be displayed and a label for highlighting.
The start/end times are not highlighted [(speaker text, speaker id), (start time/end time, None)]
This function gets the customer's sentiment and returns a list for highlighted text as well
as a plot of sentiment over time.
"""
customer_sentiments = []
to_plot = []
plot_sentences = []
# used to set the x range of ticks on the plot
x_min = 100
x_max = 0
for i in range(0, len(diarized), 2):
speaker_speech, speaker_id = diarized[i]
times, _ = diarized[i + 1]
sentences = split_into_sentences(speaker_speech)
start_time, end_time = times[5:].split("-")
start_time, end_time = float(start_time), float(end_time)
interval_size = (end_time - start_time) / len(sentences)
if "Customer" in speaker_id:
outputs = emotion_pipeline(sentences)
for idx, (o, t) in enumerate(zip(outputs, sentences)):
sent = "neutral"
if o["score"] > thresholds[o["label"]]:
customer_sentiments.append(
(t + f"({round(idx*interval_size+start_time,1)} s)", o["label"])
)
if o["label"] in {"joy", "love", "surprise"}:
sent = "positive"
elif o["label"] in {"sadness", "anger", "fear"}:
sent = "negative"
if sent != "neutral":
to_plot.append((start_time + idx * interval_size, sent))
plot_sentences.append(t)
if start_time < x_min:
x_min = start_time
if end_time > x_max:
x_max = end_time
x_min -= 5
x_max += 5
fig = create_fig(x_min, x_max, plot_sentences)
return customer_sentiments, fig
def speech_to_text(speech_file, speaker_segmentation, whisper, alignment_model, metadata, whisper_device):
speaker_output = speaker_segmentation(speech_file)
result = whisper.transcribe(speech_file)
chunks = whisperx.align(result["segments"], alignment_model, metadata, speech_file, whisper_device)["word_segments"]
diarized_output = []
i = 0
speaker_counter = 0
# New iteration every time the speaker changes
for turn, _, _ in speaker_output.itertracks(yield_label=True):
speaker = "Customer" if speaker_counter % 2 == 0 else "Support"
diarized = ""
while i < len(chunks) and chunks[i]["end"] <= turn.end:
diarized += chunks[i]["text"] + " "
i += 1
if diarized != "":
# diarized = rpunct.punctuate(re.sub(eng_pattern, "", diarized), lang="en")
diarized_output.extend(
[
(diarized, speaker),
("from {:.2f}-{:.2f}".format(turn.start, turn.end), None),
]
)
speaker_counter += 1
return diarized_output |