File size: 36,575 Bytes
9ce63e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
# GPT_Vuln-analyzer



This is a Proof Of Concept application that demostrates how AI can be used to generate accurate results for vulnerability analysis and also allows further utilization of the already super useful ChatGPT made using openai-api, python-nmap, dnsresolver python modules and also use customtkinter and tkinter for the GUI version of the code. This project also has a CLI and a GUI interface, It is capable of doing network vulnerability analysis, DNS enumeration and also subdomain enumeration.



## Requirements



- Python 3.10 or above

- All the packages mentioned in the requirements.txt file

- OpenAI API

- Bard API (MakerSuite Palm)

- HuggingFace token (with llama2 access )

- IPGeolocation API

- Wireshark and tshark (both added to path)



## Usage Package



### Import packages



```bash

cd package && pip3/pip install .

```



Simple import any of the 3 packages and then add define the variables accordingly



```python

from GVA.scanner import NetworkScanner

from GVA.dns_recon import DNSRecon
from GVA.geo import geo_ip_recon
from GVA.jwt import JWTAnalyzer
from GVA.menus import Menus
from GVA.packet_analysis import PacketAnalysis

from GVA.ai_models import NMAP_AI_MODEL
from GVA.ai_models import DNS_AI_MODEL

from GVA.ai_models import JWT_AI_MODEL
from GVA.assets import Assets
from GVA.subdomain import sub_enum

from GVA import gui



# The components defined

dns_enum = DNSRecon()
geo_ip = geo_ip_recon()

p_ai_models = NMAP_AI_MODEL()

dns_ai_models = DNS_AI_MODEL()

port_scanner = NetworkScanner()
jwt_analizer = JWTAnalyzer()

sub_recon = sub_enum()

asset_codes = Assets()
packet_analysis = PacketAnalysis()



# KEEP IT BLANK IF YOU HAVE NO CLUE THE MENU WILL ASK TO FILL IT ONCE ACTIVE

lkey = "LLAMA API KEY"

lendpoint = "LLAMA ENDPOINT"

keyset = "AI API KEY"

output_loc = "OUTPUT LOCATION FOR PCAP"
threads = 200 # Default INT 200 but can be increased.
target_ip_hostname_or_token = "TARGET IP, HOSTNAME OR TOKEN"
profile_num = "PROFILE FOR NMAP SCAN"

ai_set = "AI OF CHOICE"
akey_set = "OPENAI API KEY"

bkey_set = "BARD API KEY"
ai_set_args = ""  # Keep it blank at any cost
llamakey = "LLAMA RUNPOD API KEY"
llamaendpoint = "LLAMA RUNPOD ENDPOINT"

Menus(
    lamma_key=lkey,

    llama_api_endpoint=lendpoint,

    initial_keyset=keyset,

    threads=threads,

    output_loc=output_loc,

    target=target_ip_hostname,

    profile_num=profile_num,

    ai_set=ai_set,

    openai_akey_set=akey_set,

    bard_key_set=bkey_set,

    ai_set_args=ai_set_args,

    llama_runpod_key=llamakey,

    llama_endpoint=llamaendpoint

)



gui.application()
```



## Usage CLI



- First Change the "OPENAI_API_KEY", "GEOIP_API_KEY" and "BARD_API_KEY" part of the code with OpenAI api key and the IPGeolocation API key in the `.env` file

- For the `llama-api` option or specific the llama runpod serverless endpoint deployment option requires you to enter the `serverless endpoint ID` from runpod and also your `RUNPOD API KEY`



```python

GEOIP_API_KEY = ''

OPENAI_API_KEY = ''

BARD_API_KEY = ''

RUNPOD_ENDPOINT_ID = ''

RUNPOD_API_KEY = ''

```

- second install the packages

```bash

pip3 install -r requirements.txt

or

pip install -r requirements.txt

```

- run the code python3 gpt_vuln.py



```bash

# Regular Help Menu

python gpt_vuln.py --help

# Rich Help Menu
python gpt_vuln.py --r help



# Specify target with the attack

python gpt_vuln.py --target <IP/hostname/token> --attack dns/nmap/jwt

# Specify target and profile for nmap
python gpt_vuln.py --target <IP/hostname/token> --attack nmap --profile <1-13>

(Default:1)



# Specify target for DNS no profile needed

python gpt_vuln.py --target <IP/hostname/token> --attack dns

# Specify target for Subdomain Enumeration no profile used default list file
python gpt_vuln.py --target <HOSTNAME> --attack sub



# Specify target for Subdomain Enumeration no profile used custom list file

python gpt_vuln.py --target <HOSTNAME> --attack sub --list <PATH to FILE>

# Specify target for geolocation lookup
python gpt_vuln.py --target <IP> --attack geo



# Specify PCAP file for packet analysis

python gpt_vuln.py --target <PCAP FILE> --attack pcap --output <OUTPUT FILE LOCATION> --thread NUM of threads <200:default>

# Specify the AI to be used for nmap
python gpt_vuln.py --target <IP> --attack nmap --profile <1-5> --ai llama /llama-api /bard / openai <default>



# Specify the AI to be used for dns

python gpt_vuln.py --target <IP> --attack dns --ai llama /llama-api /bard / openai <default>

# Specify the AI to be used for JWT analysis
python gpt_vuln.py --target <token> --attack jwt --ai llama /llama-api /bard / openai <default>



# Interactive step by step cli interface

python gpt_vuln.py --menu True
```



#### CLI Interface Option



```bash

  ________________________

| GVA Usage in progress... |

  ========================

                        \

                         \

                           ^__^

                           (oo)\_______

                           (__)\       )\/\

                               ||----w |

                               ||     ||

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“

โ”ƒ Options โ”ƒ Utility        โ”ƒ

โ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ

โ”‚ 1       โ”‚ Nmap Enum      โ”‚

โ”‚ 2       โ”‚ DNS Enum       โ”‚

โ”‚ 3       โ”‚ Subdomain Enum โ”‚

โ”‚ 4       โ”‚ GEO-IP Enum    โ”‚

| 5       | JWT Analysis   |

| 6       | PCAP Analysis  |

โ”‚ q       โ”‚ Quit           โ”‚

โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Enter your choice:

```

The CLI interface has a few things to note.

- The API keys must be provided manually.
- The ones defined in the `.env` files work with the args options
- The process is similar but more organized.

### My views on Bard

Its same as Openai GPT3.5 but faster. It can generate the same answer but in 2 times the speed.

### OS Supported

| Preview                                                                                                              | Code | Name      | Working Status | OpenAI Status | Bard Status | LLama2 Status     |
| -------------------------------------------------------------------------------------------------------------------- | ---- | --------- | -------------- | ------------- | ----------- | ----------------- |
| ![](https://raw.githubusercontent.com/EgoistDeveloper/operating-system-logos/master/src/48x48/LIN.png "LIN (48x48)") | LIN  | GNU/Linux | โœ…             | โœ…            | โœ…          | โŒ [did not test] |
| ![](https://raw.githubusercontent.com/EgoistDeveloper/operating-system-logos/master/src/48x48/WIN.png "WIN (48x48)") | WIN  | Windows   | โœ…             | โœ…            | โœ…          | โœ…                |

## Understanding the code

Profiles:

| Parameter | Return data | Description                                          | Nmap Command                                          |
| :-------- | :---------- | :--------------------------------------------------- | :---------------------------------------------------- |
| `p1`      | `json`      | Effective Scan                                       | `-Pn -sV -T4 -O -F`                                   |
| `p2`      | `json`      | Simple Scan                                          | `-Pn -T4 -A -v`                                       |
| `p3`      | `json`      | Low Power Scan                                       | `-Pn -sS -sU -T4 -A -v`                               |
| `p4`      | `json`      | Partial Intense Scan                                 | `-Pn -p- -T4 -A -v`                                   |
| `p5`      | `json`      | Complete Intense Scan                                | `-Pn -sS -sU -T4 -A -PE -PP  -PY -g 53 --script=vuln` |
| `p6`      | `json`      | Comprehensive Service Version Detection              | `-Pn -sV -p- -A`                                      |
| `p7`      | `json`      | Aggressive Scan with OS Detection                    | `-Pn -sS -sV -O -T4 -A`                               |
| `p8`      | `json`      | Script Scan for Common Vulnerabilities               | `-Pn -sC`                                             |
| `p9`      | `json`      | Intense Scan, All TCP Ports                          | `-Pn -p 1-65535 -T4 -A -v`                            |
| `p10`     | `json`      | UDP Scan                                             | `-Pn -sU -T4`                                         |
| `p11`     | `json`      | Service and Version Detection for Top Ports          | `-Pn -sV --top-ports 100`                             |
| `p12`     | `json`      | Aggressive Scan with NSE Scripts for Vulnerabilities | `-Pn -sS -sV -T4 --script=default,discovery,vuln`     |
| `p13`     | `json`      | Fast Scan for Common Ports                           | `-Pn -F`                                              |

The profile is the type of scan that will be executed by the nmap subprocess. The Ip or target will be provided via argparse. At first, the custom nmap scan is run which has all the crucial arguments for the scan to continue. Next, the scan data is extracted from the huge pile of data driven by nmap. the "scan" object has a list of sub-data under "tcp" each labelled according to the ports opened. once the data is extracted the data is sent to the openai API Davinci model via a prompt. the prompt specifically asks for a JSON output and the data also to be used in a certain manner.

The entire structure of request that has to be sent to the openai API is designed in the completion section of the Program.

```python

class NetworkScanner():

    def scanner(self, AIModels, ip: Optional[str], profile: int, akey: Optional[str], bkey: Optional[str], lkey, lendpoint, AI: str) -> str:

        profile_arguments = {

            1: '-Pn -sV -T4 -O -F',

            2: '-Pn -T4 -A -v',

            3: '-Pn -sS -sU -T4 -A -v',

            4: '-Pn -p- -T4 -A -v',

            5: '-Pn -sS -sU -T4 -A -PE -PP  -PY -g 53 --script=vuln',

            6: '-Pn -sV -p- -A',

            7: '-Pn -sS -sV -O -T4 -A',

            8: '-Pn -sC',

            9: '-Pn -p 1-65535 -T4 -A -v',

            10: '-Pn -sU -T4',

            11: '-Pn -sV --top-ports 100',

            12: '-Pn -sS -sV -T4 --script=default,discovery,vuln',

            13: '-Pn -F'

        }

        # The scanner with GPT Implemented

        nm.scan('{}'.format(ip), arguments='{}'.format(profile_arguments.get(profile)))

        json_data = nm.analyse_nmap_xml_scan()

        analyze = json_data["scan"]

        match AI:

            case 'openai':

                try:

                    if akey is not None:

                        pass

                    else:

                        raise ValueError("KeyNotFound: Key Not Provided")

                    response = AIModels.GPT_AI(akey, analyze)

                except KeyboardInterrupt:

                    print("Bye")

                    quit()

            case 'bard':

                try:

                    if bkey is not None:

                        pass

                    else:

                        raise ValueError("KeyNotFound: Key Not Provided")

                    response = AIModels.BardAI(bkey, analyze)

                except KeyboardInterrupt:

                    print("Bye")

                    quit()

            case 'llama':

                try:

                    response = AIModels.Llama_AI(analyze, "local", lkey, lendpoint)

                except KeyboardInterrupt:

                    print("Bye")

                    quit()

            case 'llama-api':

                try:

                    response = AIModels.Llama_AI(analyze, "runpod", lkey, lendpoint)

                except KeyboardInterrupt:

                    print("Bye")

                    quit()

        self.response = response

        text = str(self.response)

        return text



```

# Regex

We use Regex to extract only the important information from the custom prompt provided this reduces the total amount of unwanted
data

```python

def extract_data(json_string):

    # Define the regular expression patterns for individual values

    critical_score_pattern = r'"critical score": \["(.*?)"\]'

    os_information_pattern = r'"os information": \["(.*?)"\]'

    open_ports_pattern = r'"open ports": \["(.*?)"\]'

    open_services_pattern = r'"open services": \["(.*?)"\]'

    vulnerable_service_pattern = r'"vulnerable service": \["(.*?)"\]'

    found_cve_pattern = r'"found cve": \["(.*?)"\]'



    # Initialize variables for extracted data

    critical_score = None

    os_information = None

    open_ports = None

    open_services = None

    vulnerable_service = None

    found_cve = None



    # Extract individual values using patterns

    match = re.search(critical_score_pattern, json_string)

    if match:

        critical_score = match.group(1)



    match = re.search(os_information_pattern, json_string)

    if match:

        os_information = match.group(1)



    match = re.search(open_ports_pattern, json_string)

    if match:

        open_ports = match.group(1)



    match = re.search(open_services_pattern, json_string)

    if match:

        open_services = match.group(1)



    match = re.search(vulnerable_service_pattern, json_string)

    if match:

        vulnerable_service = match.group(1)



    match = re.search(found_cve_pattern, json_string)

    if match:

        found_cve = match.group(1)



    # Create a dictionary to store the extracted data

    data = {

        "critical score": critical_score,

        "os information": os_information,

        "open ports": open_ports,

        "open services": open_services,

        "vulnerable service": vulnerable_service,

        "found cve": found_cve

    }



    # Convert the dictionary to JSON format

    json_output = json.dumps(data)



    return json_output





def AI(key: str, data: Any) -> str:

    openai.api_key = key

    try:

        prompt = f"""

        Do a NMAP scan analysis on the provided NMAP scan information

        The NMAP output must return in a JSON format accorging to the provided

        output format. The data must be accurate in regards towards a pentest report.

        The data must follow the following rules:

        1) The NMAP scans must be done from a pentester point of view

        2) The final output must be minimal according to the format given.

        3) The final output must be kept to a minimal.

        4) If a value not found in the scan just mention an empty string.

        5) Analyze everything even the smallest of data.



        The output format:

        {{

            "critical score": [""],

            "os information": [""],

            "open ports": [""],

            "open services": [""],

            "vulnerable service": [""],

            "found cve": [""]

        }}



        NMAP Data to be analyzed: {data}

        """

        # A structure for the request

        completion = openai.Completion.create(

            engine=model_engine,

            prompt=prompt,

            max_tokens=1024,

            n=1,

            stop=None,

        )

        response = completion.choices[0].text

        return extract_data(str(response))

    except KeyboardInterrupt:

        print("Bye")

        quit()

```

The AI code defines an output format and commands the AI to follow a few pre-determined rules to increase accuracy.
The regex extraction code does the extraction and further the main function arranges them into tables.

## Using Bard AI

For you to use Bard AI you must signup to the MakerSuit Palm API for developer access and generate your API key from there. For links and how this works you can use this video [MakerSuit](https://www.youtube.com/watch?v=Ce1AOchQMzA&t=128s)

Once the API is acquired just add it to the `.env` file and you are good to go.

## Using LLama2 AI

Using LLama2 is one of the best offline and free options out there. It is currently under improvement I am working on a prompt that will better incorporate cybersecurity perspective into the AI.
I have to thank **@thisserand** and his [llama2_local](https://github.com/thisserand/llama2_local) repo and also his YT video [YT_Video](https://youtu.be/WzCS8z9GqHw). They were great resources. To be frank the llama2 code is 95% his, I just yanked the code and added a Flask API functionality to it.

The Accuracy of the AI offline and outside the codes test was great and had equal accuracy to openai or bard but while in code it was facing a few issues may be because of the prompting and all. I will try and fix it.
The speed depends on your system and the GPU and CPU configs you have. currently, it is using the `TheBloke/Llama-2-7B-Chat-GGML` model and can be changed via the `portscanner` and `dnsrecon` files.

For now, the llama code and scans are handled differently. After a few tests, I found out llama needs to be trained a little to operate like how I intended it to work so it needs some time. Any suggestions on how I can do that can be added to the discussions of this repo [Discussions Link](https://github.com/morpheuslord/GPT_Vuln-analyzer/discussions). For now, the output won't be a divided list of all the data instead will be an explanation of the vulnerability or issues discovered by the AI.

### Output

#### JWT Output:

```

                                            GVA Report for JWT

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“

โ”ƒ Variables           โ”ƒ Results                                                                          โ”ƒ

โ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ

โ”‚ Algorithm Used      โ”‚ HS256                                                                            โ”‚

โ”‚ Header              โ”‚ eyJhbGciOiAiSFMyNTYiLCAidHlwIjogIkpXVCJ9                                         โ”‚

โ”‚ Payload             โ”‚ eyJzdWIiOiAiMTIzNDU2Nzg5MCIsICJuYW1lIjogIkpvaG4gRG9lIiwgImlhdCI6IDE1MTYyMzkwMjJ9 โ”‚

โ”‚ Signature           โ”‚                                                                                  โ”‚

โ”‚ PossibleAttacks     โ”‚ None identified                                                                  โ”‚

โ”‚ VulnerableEndpoints โ”‚ Unable to determine without additional information                               โ”‚

โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

```

#### Nmap output:

##### OpenAI and Bard:

```table

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“

โ”ƒ Elements           โ”ƒ Results                                             โ”ƒ

โ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ

โ”‚ critical score     โ”‚ High                                                โ”‚

โ”‚ os information     โ”‚ Microsoft Windows 11 21H2                           โ”‚

โ”‚ open ports         โ”‚ 80, 22, 445, 902, 912                               โ”‚

โ”‚ open services      โ”‚ http, ssh, microsoft-ds, vmware-auth, vmware-auth   โ”‚

โ”‚ vulnerable service โ”‚ OpenSSH                                             โ”‚

โ”‚ found cve          โ”‚ CVE-2023-28531                                      โ”‚

โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

```

##### LLama2

```table

โ•ญโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ The GVA LLama2 โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ

โ”‚                                                                                                           โ”‚

โ”‚                                                                                                           โ”‚

โ”‚                                                                                                           โ”‚

โ”‚  Based on the provided NMAP data, I have conducted a thorough analysis of the target system's open ports  โ”‚

โ”‚  and services, vulnerabilities, and operating system information. Here is my findings: Critical Score:    โ”‚

โ”‚  The critical score for this target system is 7 out of 10. The system has several open ports that could   โ”‚

โ”‚  potentially be exploited, including port 80 (HTTP), port 135 (RPC), and port 445 (Microsoft DS). While   โ”‚

โ”‚  These ports are not necessarily vulnerable, they do indicate that the system is running services that    โ”‚

โ”‚  could be targeted by attackers. Additionally, the system has an outdated version of Microsoft IIS        โ”‚

โ”‚  running on port 80, which could be a potential vulnerability. OS Information: The target system is       โ”‚

โ”‚  running Microsoft Windows 10 1607. Open Ports and Services: The target system has the following open     โ”‚

โ”‚  ports:                                                                                                   โ”‚

โ”‚                                                                                                           โ”‚

โ”‚   โ€ข Port 80: HTTP (Microsoft IIS httpd)                                                                   โ”‚

โ”‚   โ€ข Port 135: RPC (Microsoft Windows RPC)                                                                 โ”‚

โ”‚   โ€ข Port 445: Microsoft DS                                                                                โ”‚

โ”‚   โ€ข Port 8000: Splunkd httpd All of these ports are currently open and have a state of "open".            โ”‚

โ”‚     Vulnerable Services: Based on the CVEs found in the NMAP data, there are several potential            โ”‚

โ”‚     vulnerabilities in the target system's services. These include:                                       โ”‚

โ”‚   โ€ข CVE-2019-1489: An elevation of privilege vulnerability in Microsoft IIS that could be exploited by    โ”‚

โ”‚     an attacker to gain control of the system. This vulnerability is related to the outdated version of   โ”‚

โ”‚     Microsoft IIS running on port 80.                                                                     โ”‚

โ”‚   โ€ข CVE-2017-0143: A remote code execution vulnerability in Microsoft Windows RPC that could be           โ”‚

โ”‚     exploited by an attacker to execute arbitrary code on the target system. This vulnerability is        โ”‚

โ”‚     related to the outdated version of Microsoft Windows RPC running on port 135.                         โ”‚

โ”‚   โ€ข CVE-2020-1362: A remote code execution vulnerability in Microsoft DS that could be exploited by an    โ”‚

โ”‚     attacker to execute arbitrary code on the target system. This vulnerability is related to the         โ”‚

โ”‚     outdated version of Microsoft DS running on port 445. Found CVEs: The following C                     โ”‚

โ”‚                                                                                                           โ”‚

โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ

```

#### DNS Output:

target is jainuniversity.ac.in

```table

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“

โ”ƒ Elements โ”ƒ Results                                                                                                           โ”ƒ

โ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ

โ”‚ A        โ”‚ 172.67.147.95", "104.21.41.132                                                                                    โ”‚

โ”‚ AAA      โ”‚                                                                                                                   โ”‚

โ”‚ NS       โ”‚ mia.ns.cloudflare.com.","paul.ns.cloudflare.com.                                                                  โ”‚

โ”‚ MX       โ”‚ 30 aspmx5.googlemail.com.","30 aspmx4.googlemail.com.","20 alt2.aspmx.l.google.com.","30                          โ”‚

โ”‚          โ”‚ aspmx3.googlemail.com.","30 aspmx2.googlemail.com.","20 alt1.aspmx.l.google.com.","10 aspmx.l.google.com.         โ”‚

โ”‚ PTR      โ”‚                                                                                                                   โ”‚

โ”‚ SOA      โ”‚ mia.ns.cloudflare.com. dns.cloudflare.com. 2309618668 10000 2400 604800 3600                                      โ”‚

โ”‚ TXT      โ”‚ atlassian-sending-domain-verification=5b358ce4-5ad3-404d-b4b4-005bf933603b","include:_spf.atlassian.net           โ”‚

โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

```

#### GEO Location output:

```table

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“

โ”ƒ Identifiers                 โ”ƒ Data                                                                    โ”ƒ

โ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ

โ”‚ ip                          โ”‚ โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ                                                           โ”‚

โ”‚ continent_code              โ”‚ AS                                                                      โ”‚

โ”‚ continent_name              โ”‚ Asia                                                                    โ”‚

โ”‚ country_code2               โ”‚ IN                                                                      โ”‚

โ”‚ country_code3               โ”‚ IND                                                                     โ”‚

โ”‚ country_name                โ”‚ India                                                                   โ”‚

โ”‚ country_capital             โ”‚ New Delhi                                                               โ”‚

โ”‚ state_prov                  โ”‚ Haryana                                                                 โ”‚

โ”‚ state_code                  โ”‚ IN-HR                                                                   โ”‚

โ”‚ district                    โ”‚                                                                         โ”‚

โ”‚ city                        โ”‚ Gurugram                                                                โ”‚

โ”‚ zipcode                     โ”‚ 122003                                                                  โ”‚

โ”‚ latitude                    โ”‚ 28.44324                                                                โ”‚

โ”‚ longitude                   โ”‚ 77.05501                                                                โ”‚

โ”‚ is_eu                       โ”‚ False                                                                   โ”‚

โ”‚ calling_code                โ”‚ +91                                                                     โ”‚

โ”‚ country_tld                 โ”‚ .in                                                                     โ”‚

โ”‚ languages                   โ”‚ en-IN,hi,bn,te,mr,ta,ur,gu,kn,ml,or,pa,as,bh,sat,ks,ne,sd,kok,doi,mni,โ€ฆ โ”‚

โ”‚ country_flag                โ”‚ https://ipgeolocation.io/static/flags/in_64.png                         โ”‚

โ”‚ geoname_id                  โ”‚ 9148991                                                                 โ”‚

โ”‚ isp                         โ”‚ Bharti Airtel Limited                                                   โ”‚

โ”‚ connection_type             โ”‚                                                                         โ”‚

โ”‚ organization                โ”‚ Bharti Airtel Limited                                                   โ”‚

โ”‚ currency.code               โ”‚ INR                                                                     โ”‚

โ”‚ currency.name               โ”‚ Indian Rupee                                                            โ”‚

โ”‚ currency.symbol             โ”‚ โ‚น                                                                       โ”‚

โ”‚ time_zone.name              โ”‚ Asia/Kolkata                                                            โ”‚

โ”‚ time_zone.offset            โ”‚ 5.5                                                                     โ”‚

โ”‚ time_zone.current_time      โ”‚ 2023-07-11 17:08:35.057+0530                                            โ”‚

โ”‚ time_zone.current_time_unix โ”‚ 1689075515.057                                                          โ”‚

โ”‚ time_zone.is_dst            โ”‚ False                                                                   โ”‚

โ”‚ time_zone.dst_savings       โ”‚ 0                                                                       โ”‚

โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

```

#### PCAP OUTPUT

```

Collecting Json Data

Extracting IP details...

Extracting DNS details...

Extracting EAPOL details...

Extracting TCP STREAMS details...

TCP streams can take some time..

Total Streams combination:  252

Number of workers in progress:  250

Completed

                                                            GVA Report for PCAP

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“

โ”ƒ Identifiers                        โ”ƒ Data                                                                                               โ”ƒ

โ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ

โ”‚ PacketAnalysis.Services            โ”‚ ['49943', '49958', '49934', '49944', '49931', '443', '49957']                                      โ”‚

โ”‚ PacketAnalysis.TCP Streams         โ”‚ ['1', '4', '5', '2', '0', '3']                                                                     โ”‚

โ”‚ PacketAnalysis.Sources Address     โ”‚ ['โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ', '1.1.1.1', 'โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ', 'โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ', 'โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ', 'โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ']   โ”‚

โ”‚ PacketAnalysis.Destination Address โ”‚ ['โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ', '1.1.1.1', 'โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ', 'โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ', 'โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ', 'โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ']   โ”‚

โ”‚ PacketAnalysis.DNS Resolved        โ”‚ []                                                                                                 โ”‚

โ”‚ PacketAnalysis.DNS Query           โ”‚ ['oneclient.sfx.ms']                                                                               โ”‚

โ”‚ PacketAnalysis.DNS Response        โ”‚ ['oneclient.sfx.ms.edgekey.net', 'e9659.dspg.akamaiedge.net', 'oneclient.sfx.ms']                  โ”‚

โ”‚ PacketAnalysis.EAPOL Data          โ”‚ []                                                                                                 โ”‚

โ”‚ PacketAnalysis. Total Streams Data โ”‚ 126                                                                                                โ”‚

โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

```

# Usage GUI

The GUI uses customtkinter for the running of the code. The interface is straight forward the only thing required to remember is:

- When using dns attack dont specify the profile

```bash

python GVA_gui.py

```

### main window

![main](https://user-images.githubusercontent.com/70637311/228863455-993e0a21-c06c-44c7-87e6-68d758a78e2c.jpeg)

### output_DNS



![dns_output](https://user-images.githubusercontent.com/70637311/228863540-553f8560-fdf5-48f7-96e8-1f831ab3a8f2.png)



### output_nmap

![nmap_output](https://user-images.githubusercontent.com/70637311/228863611-5d8380f0-28d5-4925-9ad3-62cd28a1ecd4.png)

### oytput_geo



![GEO_output](https://user-images.githubusercontent.com/70637311/230589239-b11c39df-b047-4fbb-bb68-61d30fe2b3c9.png)



## Advantage



- Can be used in developing a more advanced systems completly made of the API and scanner combination

- Has the capability to analize DNS information and reslove Mustiple records it a more better format.

- Can increase the effectiveness of the final system

- Can also perform subdomain enumeration

- Highly productive when working with models such as GPT3