erasmopurif's picture
First commit
d2a8669
import numpy as np
from aif360.algorithms.inprocessing.celisMeta.General import General
class FalseDiscovery(General):
def getExpectedGrad(self, dist, a, b, params, samples, mu, z_prior):
t, probc_m1_0, probc_m1_1, prob_z_0, prob_z_1 = self.getValueForX(dist,
a, b, params, z_prior, samples, return_probs=True)
res = np.vstack([probc_m1_0 - a*prob_z_0,
probc_m1_1 - a*prob_z_1,
-probc_m1_0 + b*prob_z_0,
-probc_m1_1 + b*prob_z_1])
res *= t / np.sqrt(t**2 + mu**2)
return np.mean(res, axis=1)
def getValueForX(self, dist, a, b, params, z_prior, x, return_probs=False):
u_1, u_2, l_1, l_2 = params
z_0, z_1 = 1-z_prior, z_prior
pos = np.ones(len(x))
prob_1_1 = self.prob(dist, np.c_[x, pos, pos])
prob_m1_1 = self.prob(dist, np.c_[x, -pos, pos])
prob_1_0 = self.prob(dist, np.c_[x, pos, np.zeros(len(x))])
prob_m1_0 = self.prob(dist, np.c_[x, -pos, np.zeros(len(x))])
total = prob_1_1 + prob_1_0 + prob_m1_0 + prob_m1_1
# if total == 0:
# return 0
prob_y_1 = (prob_1_1 + prob_1_0) / total
prob_z_0 = (prob_m1_0 + prob_1_0) / total
prob_z_1 = (prob_m1_1 + prob_1_1) / total
probc_m1_0 = prob_m1_0 / total
probc_m1_1 = prob_m1_1 / total
c_0 = prob_y_1 - 0.5
c_1 = u_1*(probc_m1_0 - a*prob_z_0) + u_2*(probc_m1_1 - a*prob_z_1)
c_2 = l_1*(-probc_m1_0 + b*prob_z_0) + l_2*(-probc_m1_1 + b*prob_z_1)
t = c_0 + c_1 + c_2
if return_probs:
return t, probc_m1_0, probc_m1_1, prob_z_0, prob_z_1
return t
def getFuncValue(self, dist, a, b, params, samples, z_prior):
return np.mean(np.abs(self.getValueForX(dist, a, b, params, z_prior,
samples)))
@property
def num_params(self):
return 4
def gamma(self, y_true, y_pred, sens):
pos_0 = y_pred[sens == 0] == 1
pos_1 = y_pred[sens == 1] == 1
if np.sum(pos_0) == 0 or np.sum(pos_1) == 0:
return 0
fdr_0 = np.sum(pos_0 & (y_true[sens == 0] == -1)) / np.sum(pos_0)
fdr_1 = np.sum(pos_1 & (y_true[sens == 1] == -1)) / np.sum(pos_1)
if fdr_0 == 0 or fdr_1 == 0:
return 0
return min(fdr_0/fdr_1, fdr_1/fdr_0)