erasmopurif's picture
First commit
d2a8669
# Copyright 2019 Seth V. Neel, Michael J. Kearns, Aaron L. Roth, Zhiwei Steven Wu
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not
# use this file except in compliance with the License. You may obtain a copy of
# the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
"""Class Auditor and Class Group implementing auditing for rich subgroup fairness in [KRNW18].
This module contains functionality to Audit an arbitrary classifier with respect to rich subgroup fairness,
where rich subgroup fairness is defined by hyperplanes over the sensitive attributes.
Basic Usage:
auditor = Auditor(data_set, 'FP')
# returns mean(predictions | y = 0) if 'FP' 1-mean(predictions | y = 1) if FN
metric_baseline = auditor.get_baseline(y, predictions)
group = auditor.get_group(dataset_yhat.labels, metric_baseline)
"""
import numpy as np
import pandas as pd
from sklearn import linear_model
from aif360.algorithms.inprocessing.gerryfair.reg_oracle_class import RegOracle
from aif360.algorithms.inprocessing.gerryfair import clean
class Group(object):
"""Group class: created by Auditor when identifying violation."""
def __init__(self, func, group_size, weighted_disparity, disparity,
disparity_direction, group_rate):
"""Constructor for Group Class.
:param func: the linear function that defines the group
:param group_size: the proportion of the dataset in the group
:param weighted_disparity: group_size*FP or FN disparity
:param disparity: FN or FP disparity (absolute value)
:param disparity_direction: indicator whether fp in group > fp_baseline, returns {1, -1}
:param group_rate: FN or FN rate in the group
"""
super(Group, self).__init__()
self.func = func
self.group_size = group_size
self.weighted_disparity = weighted_disparity
self.disparity = disparity
self.disparity_direction = disparity_direction
self.group_rate = group_rate
def return_f(self):
return [
self.func, self.group_size, self.weighted_disparity,
self.disparity, self.disparity_direction, self.group_rate
]
class Auditor:
"""This is the Auditor class. It is used in the training algorithm to repeatedly find subgroups that break the
fairness disparity constraint. You can also use it independently as a stand alone auditor."""
def __init__(self, dataset, fairness_def):
"""Auditor constructor.
Args:
:param dataset: dataset object subclassing StandardDataset.
:param fairness_def: 'FP' or 'FN'
"""
X, X_prime, y = clean.extract_df_from_ds(dataset)
self.X_prime = X_prime
self.y_input = y
self.y_inverse = np.array(
[abs(1 - y_value) for y_value in self.y_input])
self.fairness_def = fairness_def
if self.fairness_def not in ['FP', 'FN']:
raise Exception(
'Invalid fairness metric specified: {}. Please choose \'FP\' or \'FN\'.'
.format(self.fairness_def))
self.y = self.y_input
# flip the labels for FN rate auditing
if self.fairness_def == 'FN':
self.y = self.y_inverse
self.X_prime_0 = pd.DataFrame(
[self.X_prime.iloc[u, :] for u, s in enumerate(self.y) if s == 0])
def initialize_costs(self, n):
"""Initialize the costs for CSC problem that corresponds to auditing. See paper for details.
Args:
:param self: object of class Auditor
:param n: size of the dataset
Return:
:return The costs for labeling a point 0, for labeling a point 1, as tuples.
"""
costs_0 = None
costs_1 = None
if self.fairness_def == 'FP':
costs_0 = [0.0] * n
costs_1 = [-1.0 / n * (2 * i - 1) for i in self.y_input]
elif self.fairness_def == 'FN':
costs_1 = [0.0] * n
costs_0 = [1.0 / n * (2 * i - 1) for i in self.y_input]
return tuple(costs_0), tuple(costs_1), self.X_prime_0
def get_baseline(self, y, predictions):
"""Return the baseline FP or FN rate of the classifier predictions.
Args:
:param y: true labels (binary)
:param predictions: predictions of classifier (soft predictions)
Returns:
:return: The baseline FP or FN rate of the classifier predictions
"""
if self.fairness_def == 'FP':
return np.mean([predictions[i] for i, c in enumerate(y) if c == 0])
elif self.fairness_def == 'FN':
return np.mean([(1 - predictions[i]) for i, c in enumerate(y)
if c == 1])
def update_costs(self, c_0, c_1, group, C, iteration, gamma):
"""Recursively update the costs from incorrectly predicting 1 for the learner.
Args:
:param c_0: current costs for predicting 0
:param c_1: current costs for predicting 1
:param group: last group found by the auditor, object of class Group.
:param C: see Model class for details.
:param iteration: current iteration
:param gamma: target disparity
Returns:
:return c_0, c_1: tuples of new costs for CSC problem of learner
"""
# make costs mutable type
c_0 = list(c_0)
c_1 = list(c_1)
pos_neg = group.disparity_direction
n = len(self.y)
g_members = group.func.predict(self.X_prime_0)
m = self.X_prime_0.shape[0]
g_weight = np.sum(g_members) * (1.0 / float(m))
for i in range(n):
X_prime_0_index = 0
if self.y[i] == 0:
new_group_cost = (1.0 / n) * pos_neg * C * (
1.0 / iteration) * (g_weight - g_members[X_prime_0_index])
if np.abs(group.weighted_disparity) < gamma:
new_group_cost = 0
if self.fairness_def == 'FP':
c_1[i] = (c_1[i] - 1.0 / n) * (
(iteration - 1.0) /
iteration) + new_group_cost + 1.0 / n
elif self.fairness_def == 'FN':
c_0[i] = (c_0[i] - 1.0 / n) * (
(iteration - 1.0) /
iteration) + new_group_cost + 1.0 / n
X_prime_0_index += 1
else:
if self.fairness_def == 'FP':
c_1[i] = -1.0 / n
elif self.fairness_def == 'FN':
c_0[i] = -1.0 / n
return tuple(c_0), tuple(c_1)
def get_subset(self, predictions):
"""Returns subset of dataset with y = 0 for FP and labels, or subset with y = 0 with flipped labels
if the fairness_def is FN.
Args:
:param predictions: soft predictions of the classifier
Returns:
:return: X_prime_0: subset of features with y = 0
:return: labels: the labels on y = 0 if FP else 1-labels.
"""
if self.fairness_def == 'FP':
return self.X_prime_0, [
a for u, a in enumerate(predictions) if self.y[u] == 0
]
# handles FN rate by flipping labels
elif self.fairness_def == 'FN':
return self.X_prime_0, [(1 - a) for u, a in enumerate(predictions)
if self.y[u] == 0]
def get_group(self, predictions, metric_baseline):
"""Given decisions on sensitive attributes, labels, and FP rate audit wrt
to gamma unfairness. Return the group found, the gamma unfairness, fp disparity, and sign(fp disparity).
Args:
:param predictions: soft predictions of the classifier
:param metric_baseline: see function get_baseline
Returns:
:return func: object of type RegOracle defining the group
:return g_size_0: the size of the group divided by n
:return fp_disp: |group_rate-baseline|
:return fp_disp_w: fp_disp*group_size_0
:return sgn(fp_disp): sgn(group_rate-baseline)
:return fp_group_rate_neg:
"""
X_subset, predictions_subset = self.get_subset(predictions)
m = len(predictions_subset)
n = float(len(self.y))
cost_0 = [0.0] * m
cost_1 = -1.0 / n * (metric_baseline - predictions_subset)
reg0 = linear_model.LinearRegression()
reg0.fit(X_subset, cost_0)
reg1 = linear_model.LinearRegression()
reg1.fit(X_subset, cost_1)
func = RegOracle(reg0, reg1)
group_members_0 = func.predict(X_subset)
# get the false positive rate in group
if sum(group_members_0) == 0:
fp_group_rate = 0
else:
fp_group_rate = np.mean([
r for t, r in enumerate(predictions_subset)
if group_members_0[t] == 1
])
g_size_0 = np.sum(group_members_0) * 1.0 / n
fp_disp = np.abs(fp_group_rate - metric_baseline)
fp_disp_w = fp_disp * g_size_0
cost_0_neg = [0.0] * m
cost_1_neg = -1.0 / n * (predictions_subset - metric_baseline)
reg0_neg = linear_model.LinearRegression()
reg0_neg.fit(X_subset, cost_0_neg)
reg1_neg = linear_model.LinearRegression()
reg1_neg.fit(X_subset, cost_1_neg)
func_neg = RegOracle(reg0_neg, reg1_neg)
group_members_0_neg = func_neg.predict(X_subset)
if sum(group_members_0_neg) == 0:
fp_group_rate_neg = 0
else:
fp_group_rate_neg = np.mean([
r for t, r in enumerate(predictions_subset)
if group_members_0[t] == 0
])
g_size_0_neg = np.sum(group_members_0_neg) * 1.0 / n
fp_disp_neg = np.abs(fp_group_rate_neg - metric_baseline)
fp_disp_w_neg = fp_disp_neg * g_size_0_neg
# return group
if (fp_disp_w_neg > fp_disp_w):
return Group(func_neg, g_size_0_neg, fp_disp_w_neg, fp_disp_neg,
-1, fp_group_rate)
else:
return Group(func, g_size_0, fp_disp_w, fp_disp, 1,
fp_group_rate_neg)
def audit(self, predictions):
"""Takes in predictions on dataset (X',y) and returns:
a membership vector which represents the group that violates the fairness metric,
along with the gamma disparity.
"""
if isinstance(predictions, pd.DataFrame):
predictions = predictions.values
metric_baseline = self.get_baseline(self.y_input, predictions)
group = self.get_group(predictions, metric_baseline)
return group.func.predict(self.X_prime), group.weighted_disparity