Spaces:
Runtime error
Runtime error
# Original work Copyright (c) 2017 Geoff Pleiss | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# | |
# Modified work Copyright 2018 IBM Corporation | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); you may not | |
# use this file except in compliance with the License. You may obtain a copy of | |
# the License at http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software distributed | |
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR | |
# CONDITIONS OF ANY KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations under the License. | |
import numpy as np | |
from scipy.optimize import linprog | |
from aif360.algorithms import Transformer | |
from aif360.metrics import ClassificationMetric, utils | |
class EqOddsPostprocessing(Transformer): | |
"""Equalized odds postprocessing is a post-processing technique that solves | |
a linear program to find probabilities with which to change output labels to | |
optimize equalized odds [8]_ [9]_. | |
References: | |
.. [8] M. Hardt, E. Price, and N. Srebro, "Equality of Opportunity in | |
Supervised Learning," Conference on Neural Information Processing | |
Systems, 2016. | |
.. [9] G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, and | |
K. Q. Weinberger, "On Fairness and Calibration," Conference on Neural | |
Information Processing Systems, 2017. | |
""" | |
def __init__(self, unprivileged_groups, privileged_groups, seed=None): | |
""" | |
Args: | |
unprivileged_groups (list(dict)): Representation for unprivileged | |
group. | |
privileged_groups (list(dict)): Representation for privileged | |
group. | |
seed (int, optional): Seed to make `predict` repeatable. | |
""" | |
super(EqOddsPostprocessing, self).__init__( | |
unprivileged_groups=unprivileged_groups, | |
privileged_groups=privileged_groups, | |
seed=seed) | |
self.seed = seed | |
self.model_params = None | |
self.unprivileged_groups = unprivileged_groups | |
self.privileged_groups = privileged_groups | |
def fit(self, dataset_true, dataset_pred): | |
"""Compute parameters for equalizing odds using true and predicted | |
labels. | |
Args: | |
true_dataset (BinaryLabelDataset): Dataset containing true labels. | |
pred_dataset (BinaryLabelDataset): Dataset containing predicted | |
labels. | |
Returns: | |
EqOddsPostprocessing: Returns self. | |
""" | |
metric = ClassificationMetric(dataset_true, dataset_pred, | |
unprivileged_groups=self.unprivileged_groups, | |
privileged_groups=self.privileged_groups) | |
# compute basic statistics | |
sbr = metric.base_rate(privileged=True) | |
obr = metric.base_rate(privileged=False) | |
fpr0 = metric.false_positive_rate(privileged=True) | |
fpr1 = metric.false_positive_rate(privileged=False) | |
fnr0 = metric.false_negative_rate(privileged=True) | |
fnr1 = metric.false_negative_rate(privileged=False) | |
tpr0 = metric.true_positive_rate(privileged=True) | |
tpr1 = metric.true_positive_rate(privileged=False) | |
tnr0 = metric.true_negative_rate(privileged=True) | |
tnr1 = metric.true_negative_rate(privileged=False) | |
# linear program has 4 decision variables: | |
# [Pr[label_tilde = 1 | label_hat = 1, protected_attributes = 0]; | |
# Pr[label_tilde = 1 | label_hat = 0, protected_attributes = 0]; | |
# Pr[label_tilde = 1 | label_hat = 1, protected_attributes = 1]; | |
# Pr[label_tilde = 1 | label_hat = 0, protected_attributes = 1]] | |
# Coefficients of the linear objective function to be minimized. | |
c = np.array([fpr0 - tpr0, tnr0 - fnr0, fpr1 - tpr1, tnr1 - fnr1]) | |
# A_ub - 2-D array which, when matrix-multiplied by x, gives the values | |
# of the upper-bound inequality constraints at x | |
# b_ub - 1-D array of values representing the upper-bound of each | |
# inequality constraint (row) in A_ub. | |
# Just to keep these between zero and one | |
A_ub = np.array([[ 1, 0, 0, 0], | |
[-1, 0, 0, 0], | |
[ 0, 1, 0, 0], | |
[ 0, -1, 0, 0], | |
[ 0, 0, 1, 0], | |
[ 0, 0, -1, 0], | |
[ 0, 0, 0, 1], | |
[ 0, 0, 0, -1]], dtype=np.float64) | |
b_ub = np.array([1, 0, 1, 0, 1, 0, 1, 0], dtype=np.float64) | |
# Create boolean conditioning vectors for protected groups | |
cond_vec_priv = utils.compute_boolean_conditioning_vector( | |
dataset_pred.protected_attributes, | |
dataset_pred.protected_attribute_names, | |
self.privileged_groups) | |
cond_vec_unpriv = utils.compute_boolean_conditioning_vector( | |
dataset_pred.protected_attributes, | |
dataset_pred.protected_attribute_names, | |
self.unprivileged_groups) | |
sconst = np.ravel( | |
dataset_pred.labels[cond_vec_priv] == dataset_pred.favorable_label) | |
sflip = np.ravel( | |
dataset_pred.labels[cond_vec_priv] == dataset_pred.unfavorable_label) | |
oconst = np.ravel( | |
dataset_pred.labels[cond_vec_unpriv] == dataset_pred.favorable_label) | |
oflip = np.ravel( | |
dataset_pred.labels[cond_vec_unpriv] == dataset_pred.unfavorable_label) | |
y_true = dataset_true.labels.ravel() | |
sm_tn = np.logical_and(sflip, | |
y_true[cond_vec_priv] == dataset_true.unfavorable_label, | |
dtype=np.float64) | |
sm_fn = np.logical_and(sflip, | |
y_true[cond_vec_priv] == dataset_true.favorable_label, | |
dtype=np.float64) | |
sm_fp = np.logical_and(sconst, | |
y_true[cond_vec_priv] == dataset_true.unfavorable_label, | |
dtype=np.float64) | |
sm_tp = np.logical_and(sconst, | |
y_true[cond_vec_priv] == dataset_true.favorable_label, | |
dtype=np.float64) | |
om_tn = np.logical_and(oflip, | |
y_true[cond_vec_unpriv] == dataset_true.unfavorable_label, | |
dtype=np.float64) | |
om_fn = np.logical_and(oflip, | |
y_true[cond_vec_unpriv] == dataset_true.favorable_label, | |
dtype=np.float64) | |
om_fp = np.logical_and(oconst, | |
y_true[cond_vec_unpriv] == dataset_true.unfavorable_label, | |
dtype=np.float64) | |
om_tp = np.logical_and(oconst, | |
y_true[cond_vec_unpriv] == dataset_true.favorable_label, | |
dtype=np.float64) | |
# A_eq - 2-D array which, when matrix-multiplied by x, | |
# gives the values of the equality constraints at x | |
# b_eq - 1-D array of values representing the RHS of each equality | |
# constraint (row) in A_eq. | |
# Used to impose equality of odds constraint | |
A_eq = [[(np.mean(sconst*sm_tp) - np.mean(sflip*sm_tp)) / sbr, | |
(np.mean(sflip*sm_fn) - np.mean(sconst*sm_fn)) / sbr, | |
(np.mean(oflip*om_tp) - np.mean(oconst*om_tp)) / obr, | |
(np.mean(oconst*om_fn) - np.mean(oflip*om_fn)) / obr], | |
[(np.mean(sconst*sm_fp) - np.mean(sflip*sm_fp)) / (1-sbr), | |
(np.mean(sflip*sm_tn) - np.mean(sconst*sm_tn)) / (1-sbr), | |
(np.mean(oflip*om_fp) - np.mean(oconst*om_fp)) / (1-obr), | |
(np.mean(oconst*om_tn) - np.mean(oflip*om_tn)) / (1-obr)]] | |
b_eq = [(np.mean(oflip*om_tp) + np.mean(oconst*om_fn)) / obr | |
- (np.mean(sflip*sm_tp) + np.mean(sconst*sm_fn)) / sbr, | |
(np.mean(oflip*om_fp) + np.mean(oconst*om_tn)) / (1-obr) | |
- (np.mean(sflip*sm_fp) + np.mean(sconst*sm_tn)) / (1-sbr)] | |
# Linear program | |
self.model_params = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq) | |
return self | |
def predict(self, dataset): | |
"""Perturb the predicted labels to obtain new labels that satisfy | |
equalized odds constraints. | |
Args: | |
dataset (BinaryLabelDataset): Dataset containing labels that needs | |
to be transformed. | |
dataset (BinaryLabelDataset): Transformed dataset. | |
""" | |
if self.seed is not None: | |
np.random.seed(self.seed) | |
# Get the model parameters output from fit | |
sp2p, sn2p, op2p, on2p = self.model_params.x | |
# Create boolean conditioning vectors for protected groups | |
cond_vec_priv = utils.compute_boolean_conditioning_vector( | |
dataset.protected_attributes, dataset.protected_attribute_names, | |
self.privileged_groups) | |
cond_vec_unpriv = utils.compute_boolean_conditioning_vector( | |
dataset.protected_attributes, dataset.protected_attribute_names, | |
self.unprivileged_groups) | |
# Randomly flip labels according to the probabilities in model_params | |
self_fair_pred = dataset.labels[cond_vec_priv].copy() | |
self_pp_indices, _ = np.nonzero( | |
dataset.labels[cond_vec_priv] == dataset.favorable_label) | |
self_pn_indices, _ = np.nonzero( | |
dataset.labels[cond_vec_priv] == dataset.unfavorable_label) | |
np.random.shuffle(self_pp_indices) | |
np.random.shuffle(self_pn_indices) | |
n2p_indices = self_pn_indices[:int(len(self_pn_indices) * sn2p)] | |
self_fair_pred[n2p_indices] = dataset.favorable_label | |
p2n_indices = self_pp_indices[:int(len(self_pp_indices) * (1 - sp2p))] | |
self_fair_pred[p2n_indices] = dataset.unfavorable_label | |
othr_fair_pred = dataset.labels[cond_vec_unpriv].copy() | |
othr_pp_indices, _ = np.nonzero( | |
dataset.labels[cond_vec_unpriv] == dataset.favorable_label) | |
othr_pn_indices, _ = np.nonzero( | |
dataset.labels[cond_vec_unpriv] == dataset.unfavorable_label) | |
np.random.shuffle(othr_pp_indices) | |
np.random.shuffle(othr_pn_indices) | |
n2p_indices = othr_pn_indices[:int(len(othr_pn_indices) * on2p)] | |
othr_fair_pred[n2p_indices] = dataset.favorable_label | |
p2n_indices = othr_pp_indices[:int(len(othr_pp_indices) * (1 - op2p))] | |
othr_fair_pred[p2n_indices] = dataset.unfavorable_label | |
# Mutated, fairer dataset with new labels | |
dataset_new = dataset.copy() | |
new_labels = np.zeros_like(dataset.labels, dtype=np.float64) | |
new_labels[cond_vec_priv] = self_fair_pred | |
new_labels[cond_vec_unpriv] = othr_fair_pred | |
dataset_new.labels = new_labels | |
return dataset_new | |
def fit_predict(self, dataset_true, dataset_pred): | |
"""fit and predict methods sequentially.""" | |
return self.fit(dataset_true, dataset_pred).predict(dataset_pred) | |