FairUP / src /models /RHGN /layers.py
erasmopurif's picture
First commit
d2a8669
import dgl
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl.function as fn
from dgl.nn.functional import edge_softmax
import pandas as pd
class RHGNLayer(nn.Module):
def __init__(self,
in_dim,
out_dim,
node_dict,
edge_dict,
n_heads,
dropout = 0.2,
use_norm = False):
super(RHGNLayer, self).__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.node_dict = node_dict
self.edge_dict = edge_dict
self.num_types = len(node_dict)
self.num_relations = len(edge_dict)
self.total_rel = self.num_types * self.num_relations * self.num_types
self.n_heads = n_heads
self.d_k = out_dim // n_heads
self.sqrt_dk = math.sqrt(self.d_k)
self.att = None
self.k_linears = nn.ModuleList()
self.q_linears = nn.ModuleList()
self.v_linears = nn.ModuleList()
self.a_linears = nn.ModuleList()
self.norms = nn.ModuleList()
self.use_norm = use_norm
for t in range(self.num_types):
self.k_linears.append(nn.Linear(in_dim, out_dim))
self.q_linears.append(nn.Linear(in_dim, out_dim))
self.v_linears.append(nn.Linear(in_dim, out_dim))
self.a_linears.append(nn.Linear(out_dim, out_dim))
if use_norm:
self.norms.append(nn.LayerNorm(out_dim))
self.relation_pri = nn.Parameter(torch.ones(self.num_relations, self.n_heads))
self.relation_att = nn.Parameter(torch.Tensor(self.num_relations, n_heads, self.d_k, self.d_k))
self.relation_msg = nn.Parameter(torch.Tensor(self.num_relations, n_heads, self.d_k, self.d_k))
self.skip = nn.Parameter(torch.ones(self.num_types))
self.drop = nn.Dropout(dropout)
nn.init.xavier_uniform_(self.relation_att)
nn.init.xavier_uniform_(self.relation_msg)
def forward(self, G, h,is_batch=True,is_train=True,print_flag=False):
with G.local_scope():
node_dict, edge_dict = self.node_dict, self.edge_dict
for srctype, etype, dsttype in G.canonical_etypes:
sub_graph = G[srctype, etype, dsttype]
k_linear = self.k_linears[node_dict[srctype]]
v_linear = self.v_linears[node_dict[srctype]]
q_linear = self.q_linears[node_dict[dsttype]]
#k_linear = self.k_linears[0]
#v_linear = self.v_linears[0]
#q_linear = self.q_linears[0]
k = k_linear(h[srctype]).view(-1, self.n_heads, self.d_k)
v = v_linear(h[srctype]).view(-1, self.n_heads, self.d_k)
if is_batch:
q = q_linear(h[dsttype][:sub_graph.number_of_dst_nodes()]).view(-1, self.n_heads, self.d_k)
else:
q = q_linear(h[dsttype]).view(-1, self.n_heads, self.d_k)
e_id = self.edge_dict[etype]
relation_att = self.relation_att[e_id]
relation_pri = self.relation_pri[e_id]
relation_msg = self.relation_msg[e_id]
#relation_att = self.relation_att[0]
#relation_msg = self.relation_msg[0]
#relation_pri = self.relation_pri[0]
k = torch.einsum("bij,ijk->bik", k, relation_att)
v = torch.einsum("bij,ijk->bik", v, relation_msg)
sub_graph.srcdata['k'] = k
sub_graph.dstdata['q'] = q
sub_graph.srcdata['v_%d' % e_id] = v
sub_graph.apply_edges(fn.v_dot_u('q', 'k', 't'))
attn_score = sub_graph.edata.pop('t').sum(-1) * relation_pri / self.sqrt_dk
attn_score = edge_softmax(sub_graph, attn_score, norm_by='dst')
sub_graph.edata['t'] = attn_score.unsqueeze(-1)
'''
if print_flag==True:
# print('---------------',srctype,etype,dsttype,'---------------------')
srcnode=sub_graph.edges()[0].cpu().numpy()
dstnode=sub_graph.edges()[1].cpu().numpy()
attweight=attn_score.mean(dim=-1).cpu().detach().numpy()
# print(srcnode.shape,dstnode.shape,attweight.shape)
import time
if etype=='click':
df=pd.DataFrame({srctype:srcnode,dsttype:dstnode,etype:attweight})
df.to_csv('../data/attweight/{}.csv'.format(time.time()),index=False)
if etype=='purchase':
df = pd.DataFrame({srctype: srcnode, dsttype: dstnode, etype: attweight})
df.to_csv('../data/attweight/{}.csv'.format(time.time()), index=False)
'''
G.multi_update_all({etype : (fn.u_mul_e('v_%d' % e_id, 't', 'm'), fn.sum('m', 't')) for etype, e_id in edge_dict.items()},
cross_reducer = 'mean')
new_h = {}
for ntype in G.ntypes:
'''
Step 3: Target-specific Aggregation
x = norm( W[node_type] * gelu( Agg(x) ) + x )
'''
n_id = node_dict[ntype]
alpha = torch.sigmoid(self.skip[n_id])
if is_batch:
t = G.dstnodes[ntype].data['t'].view(-1, self.out_dim)
else:
t = G.nodes[ntype].data['t'].view(-1, self.out_dim)
trans_out = self.a_linears[n_id](t)
if is_train:
trans_out = self.drop(trans_out)
trans_out = trans_out * alpha + h[ntype][:G.number_of_dst_nodes(ntype)] * (1-alpha)
if self.use_norm:
new_h[ntype] = self.norms[n_id](trans_out)
else:
new_h[ntype] = trans_out
return new_h