project2 / Head_Agent.py
ericlkc's picture
initial
2702698 verified
import pinecone
import openai
from openai import OpenAI
from Answering_Agent import Answering_Agent
from Obnoxious_Agent import Obnoxious_Agent
from Query_Agent import Query_Agent
from Relevant_Documents_Agent import Relevant_Documents_Agent
class Head_Agent:
def __init__(self, openai_key, pinecone_key, pinecone_index_name) -> None:
# TODO: Initialize the Head_Agent
# Store API keys and Pinecone index name
openai_key = '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'
self.openai_client = OpenAI(api_key=openai_key)
self.openai_key = openai_key
self.pinecone_key = pinecone_key
self.pinecone_index_name = pinecone_index_name
# Initialize Pinecone
# Placeholder for sub-agents, to be initialized in setup_sub_agents
self.obnoxious_agent = None
self.query_agent = None
self.answering_agent = None
self.relevant_documents_agent = None
# set up sub agents
self.setup_sub_agents()
def get_completion(self, prompt, model="gpt-4"):
message = {"role": "user", "content": prompt}
response = self.openai_client.chat.completions.create(
model=model,
messages=[message]
)
return response.choices[0].message.content
def setup_sub_agents(self):
# TODO: Setup the sub-agents
# Setup the Obnoxious_Agent
self.obnoxious_agent = Obnoxious_Agent() # Assuming no external API client required
# Set up the Query_Agent with Pinecone index
self.query_agent = Query_Agent(pinecone_index=self.pinecone_index_name, openai_client=openai,
embeddings="text-embedding-ada-002")
# Set up the Answering_Agent
self.answering_agent = Answering_Agent(openai_api_key=self.openai_key)
openai_client = OpenAI(api_key=self.openai_key)
self.relevant_documents_agent = Relevant_Documents_Agent(openai_client)
def process_query(self, user_input, conversation_history):
# Check if the query is obnoxious
# conversation_history = get_conversation()
if self.obnoxious_agent.check_query(user_input) == "Yes":
return "Sorry, I cannot respond to this query."
greetings = [
"hi", "hello", "how are you", "hey", "good morning",
"good afternoon", "good evening", "greetings", "what's up",
"howdy", "hi there", "hello there", "hey there"
]
if user_input.lower() in greetings:
return "How can I help you today?"
# Retrieve relevant documents for the query (simplified example)
# In a real scenario, you might need to preprocess the query for embeddings
relevant_docs = self.query_agent.query_vector_store(user_input, k=5)
print("relevant_docs .length : ")
print(len(relevant_docs))
if len(relevant_docs) == 0:
none_relevant_docs = "No relevant documents found in the documents.Please ask a relevant question to the book on Machine Learning."
return none_relevant_docs
# choose mode
prompt_choose_mode = "Infer whether the user wants the response to be chatty or concise? If the response needs to be chatty you must answer chatty, otherwise answer concise and the answer must contain only the one word. Here is user_input: "+ user_input
prompt_choose_mode = self.get_completion(prompt=prompt_choose_mode, model="gpt-4")
if prompt_choose_mode == "chatty":
response = self.answering_agent.generate_response(user_input, relevant_docs, conv_history=conversation_history,
mode="chatty")
elif prompt_choose_mode =="concise":
response = self.answering_agent.generate_response(user_input, relevant_docs,
conv_history=conversation_history,
mode="concise")
else:
# Generate a response based on the query and relevant documents
response = self.answering_agent.generate_response(user_input, relevant_docs, conv_history=conversation_history,
mode="chatty")
print("prompt_choose_mode: "+ prompt_choose_mode )
return response