erjonb commited on
Commit
c5e7d0f
·
1 Parent(s): 8c544be

Upload P2 - Secom Notebook - Mercury.ipynb

Browse files
Files changed (1) hide show
  1. P2 - Secom Notebook - Mercury.ipynb +101 -74
P2 - Secom Notebook - Mercury.ipynb CHANGED
@@ -26,7 +26,7 @@
26
  },
27
  {
28
  "cell_type": "code",
29
- "execution_count": 117,
30
  "metadata": {
31
  "slideshow": {
32
  "slide_type": "skip"
@@ -53,7 +53,7 @@
53
  },
54
  {
55
  "cell_type": "code",
56
- "execution_count": 118,
57
  "metadata": {
58
  "slideshow": {
59
  "slide_type": "skip"
@@ -64,7 +64,7 @@
64
  "data": {
65
  "application/mercury+json": {
66
  "allow_download": true,
67
- "code_uid": "App.0.40.24.1-rand92992328",
68
  "continuous_update": false,
69
  "description": "Recumpute everything dynamically",
70
  "full_screen": true,
@@ -96,7 +96,7 @@
96
  },
97
  {
98
  "cell_type": "code",
99
- "execution_count": 119,
100
  "metadata": {
101
  "slideshow": {
102
  "slide_type": "skip"
@@ -138,7 +138,7 @@
138
  },
139
  {
140
  "cell_type": "code",
141
- "execution_count": 120,
142
  "metadata": {
143
  "slideshow": {
144
  "slide_type": "skip"
@@ -195,7 +195,7 @@
195
  },
196
  {
197
  "cell_type": "code",
198
- "execution_count": 121,
199
  "metadata": {
200
  "slideshow": {
201
  "slide_type": "skip"
@@ -290,7 +290,7 @@
290
  },
291
  {
292
  "cell_type": "code",
293
- "execution_count": 122,
294
  "metadata": {
295
  "slideshow": {
296
  "slide_type": "skip"
@@ -341,7 +341,7 @@
341
  },
342
  {
343
  "cell_type": "code",
344
- "execution_count": 123,
345
  "metadata": {
346
  "slideshow": {
347
  "slide_type": "skip"
@@ -419,7 +419,7 @@
419
  },
420
  {
421
  "cell_type": "code",
422
- "execution_count": 124,
423
  "metadata": {
424
  "slideshow": {
425
  "slide_type": "skip"
@@ -499,7 +499,7 @@
499
  },
500
  {
501
  "cell_type": "code",
502
- "execution_count": 125,
503
  "metadata": {
504
  "slideshow": {
505
  "slide_type": "skip"
@@ -585,7 +585,7 @@
585
  },
586
  {
587
  "cell_type": "code",
588
- "execution_count": 126,
589
  "metadata": {
590
  "slideshow": {
591
  "slide_type": "skip"
@@ -648,7 +648,7 @@
648
  },
649
  {
650
  "cell_type": "code",
651
- "execution_count": 127,
652
  "metadata": {
653
  "slideshow": {
654
  "slide_type": "skip"
@@ -737,7 +737,7 @@
737
  },
738
  {
739
  "cell_type": "code",
740
- "execution_count": 128,
741
  "metadata": {
742
  "slideshow": {
743
  "slide_type": "skip"
@@ -750,13 +750,6 @@
750
  "from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score\n",
751
  "\n",
752
  "def evaluate_models(model='random_forest'):\n",
753
- " print('Have the duplicates been removed?', drop_duplicates_var)\n",
754
- " print('Missing values threshold is:', missing_values_threshold_var,' - Variance threshold is:,', variance_threshold_var,' - Correlation threshold is:', correlation_threshold_var)\n",
755
- " print('Outlier removal threshold is:', outlier_var)\n",
756
- " print('Scaling method is:', scale_model_var)\n",
757
- " print('Imputation method is:', imputation_var)\n",
758
- " print('Feature selection method is:', feature_selection_var)\n",
759
- " print('Imbalance treatment method is:', imbalance_var)\n",
760
  "\n",
761
  " all_models = ['random_forest', 'logistic_regression', 'knn', 'svm', 'naive_bayes', 'decision_tree', 'xgboost']\n",
762
  " evaluation_score_append = []\n",
@@ -825,7 +818,7 @@
825
  },
826
  {
827
  "cell_type": "code",
828
- "execution_count": 129,
829
  "metadata": {
830
  "slideshow": {
831
  "slide_type": "skip"
@@ -839,17 +832,17 @@
839
  "yes",
840
  "no"
841
  ],
842
- "code_uid": "Select.0.40.16.25-rand7e848899",
843
  "disabled": false,
844
  "hidden": false,
845
  "label": "Drop Duplicates",
846
- "model_id": "78db72d25e074b869614de47137d0448",
847
  "url_key": "",
848
  "value": "yes",
849
  "widget": "Select"
850
  },
851
  "application/vnd.jupyter.widget-view+json": {
852
- "model_id": "78db72d25e074b869614de47137d0448",
853
  "version_major": 2,
854
  "version_minor": 0
855
  },
@@ -863,18 +856,18 @@
863
  {
864
  "data": {
865
  "application/mercury+json": {
866
- "code_uid": "Text.0.40.15.28-rand8e5732e8",
867
  "disabled": false,
868
  "hidden": false,
869
  "label": "Missing Value Threeshold",
870
- "model_id": "f78ef6cc053648c19f15aa01597b534a",
871
  "rows": 1,
872
  "url_key": "",
873
  "value": "80",
874
  "widget": "Text"
875
  },
876
  "application/vnd.jupyter.widget-view+json": {
877
- "model_id": "f78ef6cc053648c19f15aa01597b534a",
878
  "version_major": 2,
879
  "version_minor": 0
880
  },
@@ -888,18 +881,18 @@
888
  {
889
  "data": {
890
  "application/mercury+json": {
891
- "code_uid": "Text.0.40.15.31-rand6f7ca014",
892
  "disabled": false,
893
  "hidden": false,
894
  "label": "Variance Threshold",
895
- "model_id": "5261497c6c9d48ff98150666a710b79f",
896
  "rows": 1,
897
  "url_key": "",
898
  "value": "0",
899
  "widget": "Text"
900
  },
901
  "application/vnd.jupyter.widget-view+json": {
902
- "model_id": "5261497c6c9d48ff98150666a710b79f",
903
  "version_major": 2,
904
  "version_minor": 0
905
  },
@@ -913,18 +906,18 @@
913
  {
914
  "data": {
915
  "application/mercury+json": {
916
- "code_uid": "Text.0.40.15.34-rand08bf9f01",
917
  "disabled": false,
918
  "hidden": false,
919
  "label": "Correlation Threshold",
920
- "model_id": "4368fac8a54944ec8869b93c28f79673",
921
  "rows": 1,
922
  "url_key": "",
923
  "value": "1",
924
  "widget": "Text"
925
  },
926
  "application/vnd.jupyter.widget-view+json": {
927
- "model_id": "4368fac8a54944ec8869b93c28f79673",
928
  "version_major": 2,
929
  "version_minor": 0
930
  },
@@ -944,17 +937,17 @@
944
  4,
945
  5
946
  ],
947
- "code_uid": "Select.0.40.16.38-rand8c9dc1e9",
948
  "disabled": false,
949
  "hidden": false,
950
  "label": "Outlier Removal Threshold",
951
- "model_id": "7a670fc3850143b39f8d41bb867b09c2",
952
  "url_key": "",
953
  "value": "none",
954
  "widget": "Select"
955
  },
956
  "application/vnd.jupyter.widget-view+json": {
957
- "model_id": "7a670fc3850143b39f8d41bb867b09c2",
958
  "version_major": 2,
959
  "version_minor": 0
960
  },
@@ -975,17 +968,17 @@
975
  "minmax",
976
  "robust"
977
  ],
978
- "code_uid": "Select.0.40.16.46-rand3225540c",
979
  "disabled": false,
980
  "hidden": false,
981
  "label": "Scaling Variables",
982
- "model_id": "63bb246f2aef4cdb818b9db80076ad6b",
983
  "url_key": "",
984
  "value": "none",
985
  "widget": "Select"
986
  },
987
  "application/vnd.jupyter.widget-view+json": {
988
- "model_id": "63bb246f2aef4cdb818b9db80076ad6b",
989
  "version_major": 2,
990
  "version_minor": 0
991
  },
@@ -1005,17 +998,17 @@
1005
  "knn",
1006
  "most_frequent"
1007
  ],
1008
- "code_uid": "Select.0.40.16.50-rand6b935ac8",
1009
  "disabled": false,
1010
  "hidden": false,
1011
  "label": "Imputation Methods",
1012
- "model_id": "343d094ce57041bea6fc249e1e6b3fc0",
1013
  "url_key": "",
1014
  "value": "mean",
1015
  "widget": "Select"
1016
  },
1017
  "application/vnd.jupyter.widget-view+json": {
1018
- "model_id": "343d094ce57041bea6fc249e1e6b3fc0",
1019
  "version_major": 2,
1020
  "version_minor": 0
1021
  },
@@ -1036,17 +1029,17 @@
1036
  "pca",
1037
  "boruta"
1038
  ],
1039
- "code_uid": "Select.0.40.16.55-rand0bacb10c",
1040
  "disabled": false,
1041
  "hidden": false,
1042
  "label": "Feature Selection",
1043
- "model_id": "6cb844c4413442c7af4907d9f0af5a79",
1044
  "url_key": "",
1045
  "value": "none",
1046
  "widget": "Select"
1047
  },
1048
  "application/vnd.jupyter.widget-view+json": {
1049
- "model_id": "6cb844c4413442c7af4907d9f0af5a79",
1050
  "version_major": 2,
1051
  "version_minor": 0
1052
  },
@@ -1066,17 +1059,17 @@
1066
  "undersampling",
1067
  "rose"
1068
  ],
1069
- "code_uid": "Select.0.40.16.59-randb88939bd",
1070
  "disabled": false,
1071
  "hidden": false,
1072
  "label": "Imbalance Treatment",
1073
- "model_id": "23f135fd27ca4174b4f80b53f9e2878b",
1074
  "url_key": "",
1075
  "value": "none",
1076
  "widget": "Select"
1077
  },
1078
  "application/vnd.jupyter.widget-view+json": {
1079
- "model_id": "23f135fd27ca4174b4f80b53f9e2878b",
1080
  "version_major": 2,
1081
  "version_minor": 0
1082
  },
@@ -1099,17 +1092,17 @@
1099
  "decision_tree",
1100
  "xgboost"
1101
  ],
1102
- "code_uid": "Select.0.40.16.64-rand2cb8e572",
1103
  "disabled": false,
1104
  "hidden": false,
1105
  "label": "Model Selection",
1106
- "model_id": "ac627c0a6ae64f34a97ce1b2f803d50a",
1107
  "url_key": "",
1108
  "value": "random_forest",
1109
  "widget": "Select"
1110
  },
1111
  "application/vnd.jupyter.widget-view+json": {
1112
- "model_id": "ac627c0a6ae64f34a97ce1b2f803d50a",
1113
  "version_major": 2,
1114
  "version_minor": 0
1115
  },
@@ -1217,7 +1210,7 @@
1217
  },
1218
  {
1219
  "cell_type": "code",
1220
- "execution_count": 130,
1221
  "metadata": {
1222
  "slideshow": {
1223
  "slide_type": "skip"
@@ -1298,7 +1291,7 @@
1298
  },
1299
  {
1300
  "cell_type": "code",
1301
- "execution_count": 131,
1302
  "metadata": {
1303
  "slideshow": {
1304
  "slide_type": "skip"
@@ -1336,26 +1329,13 @@
1336
  },
1337
  {
1338
  "cell_type": "code",
1339
- "execution_count": 132,
1340
  "metadata": {
1341
  "slideshow": {
1342
  "slide_type": "slide"
1343
  }
1344
  },
1345
  "outputs": [
1346
- {
1347
- "name": "stdout",
1348
- "output_type": "stream",
1349
- "text": [
1350
- "Have the duplicates been removed? yes\n",
1351
- "Missing values threshold is: 80 - Variance threshold is:, 0.0 - Correlation threshold is: 1.0\n",
1352
- "Outlier removal threshold is: none\n",
1353
- "Scaling method is: none\n",
1354
- "Imputation method is: mean\n",
1355
- "Feature selection method is: none\n",
1356
- "Imbalance treatment method is: none\n"
1357
- ]
1358
- },
1359
  {
1360
  "data": {
1361
  "text/html": [
@@ -1459,9 +1439,9 @@
1459
  },
1460
  {
1461
  "data": {
1462
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUcAAAFMCAYAAABYjn6oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAr6ElEQVR4nO3deVxU5f4H8M8IDKDAiBAgCogbIpsIV8R9BZdUyszMfffmvucvl1tm7mFqmOWClLfUzDLzZu6KLCWCK6KmLMIgyirG5nB+f5ijI0djZDkz+Hm/XrzunWfOefjOvPDTM+d55jkyQRAEEBGRhlpSF0BEpIsYjkREIhiOREQiGI5ERCIYjkREIhiOREQiGI5ERCIMpS6gIkpLS5GWlgZzc3PIZDKpyyEiPSAIAu7fvw97e3vUqvX88aFeh2NaWhocHBykLoOI9FBKSgoaNmz43Of1OhzNzc0BAPKWIyEzkEtcDema5BNrpC6BdND9vDw0dXZQ58fz6HU4Pv4oLTOQMxypDAsLC6lLIB32T5fiOCFDRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguGow8YP6oDfdy3AndOrcef0apzYMRsB7VtqHOPibIs96yYi/dRqZISvwckds+FgZ6lxjJ+nM/63eSruRayF8tQqHPpqOkyMjarzpZCENm8KQYtmzqhrZoJ2bXwQHn5a6pL0gqHUBdDzpd7JwaINP+HP5HsAgGH9/LAneALavrMC8TfT4dzQGke3zcKOHyPw8aZfkJtfgBbOdigsKlH34efpjJ82voc123/DrJV7UPxQBc/mDVBaKkj1sqga7dm9C3Nnz8BnG0Lg3649tny1GUGv98a5C1fg6OgodXk6TSYIgt7+K8nLy4NCoYCxx3jIDORSl1MtUk+sxP+t+xE7foxE2IrRKClRYeyisOcef3LHbByNvoqPQn6pxip1Q/YfG6UuQXId2/nB27s11n++Sd3WysMV/foHYemy5RJWJp28vDzYWimQm5sLCwuL5x7Hj9V6olYtGQYF+qCOqRzRF25BJpOhVwc3XE/OwP7PJyPp6HKcCpuDfl081ee8ZmmGNp7OuJuVj+Ohs5B45BP8tmU62rVqLOEroepSXFyM2HMx6N4zQKO9e48AREVGSFSV/mA46ji3pva4e2YtcqPXYf0HgzF49le4ejMdNvXMYF7HBHNG98ThiCvo9++N2H/8PL5bOw4dfJoCAJwbWgMAPpjYB9t+iMCAySGIi0/Bwc1T0cTxNSlfFlWDe/fuQaVSwcbGVqPd1tYWd+6kS1SV/uA1Rx13LfEO/N5ZjrrmtRHUvRW++mg4AsZ9htz7BQCAAycuYsPO4wCAC9dS4efVGOPf6oDwmBuoVUsGANi6Nxxf748CAJxPuI0ubVwwcoA/Fm/YL82Lomolk8k0HguCUKaNyuLIUceVPFThZso9nLuSjMUb9uPitVRMHtIF97LzUVKiQvxNpcbxCTfT1bPVyrt5AID4m5qjhIRb6WVmtKnmsba2hoGBQZlRYkZGRpnRJJXFcNQzMshgLDdEyUMVYq4kobmT5h95MycbJCuzAQBJaZlIy8hB80Y2Gsc0dbJBsjKr2momacjlcni39sGxI4c12o8dPYy2/u0kqkp/8GO1DvtwSj/8duYKUtKzYV7HBIMCfdDJtxn6Tw4BAATvOIKvV45B+LkbOHn2GgLatUSfTu4IHP+Zuo/gHUewcFJfXLyWivMJtzGsnx9cGtni3blbpXpZVI2mzZiFsaOGo7WPL/za+mPrli+RkpyMcRMmSV2azmM46jAbK3Ns/XgE7KwtkJtfiEvXU9F/cgiORV8FAOw/fgFTl32HuWMCsHbeW7iWlIEhc7cgIu6muo+N/z0BE2MjrJo9EJaK2rh4LRWv/3sjbt2+J9XLomo06O3ByMrMxCfLPkK6Ugk3N3f8+PNBODk5SV2azpN8nWNISAhWr14NpVIJNzc3rFu3Dh07dizXua/iOkcqP65zJDF6sc5x165dmDFjBj744APExsaiY8eO6N27N5KTk6Usi4hI2nD89NNPMXbsWIwbNw6urq5Yt24dHBwcsGnTpn8+mYioCkkWjsXFxYiJiUFAgObq/YCAAEREiK/eLyoqQl5ensYPEVFVkCwcH6/et7Utu3o/PV189f7y5cuhUCjUPw4ODtVRKhG9giRf56jN6v0FCxYgNzdX/ZOSklIdJRLRK0iycHy8ev/ZUWJGRkaZ0eRjxsbGsLCw0PipCeop6iDp6HI41q8naR1uTe1x49elqG3CmX9dkZmZCUd7GyQlJkpax6WLF9GkUUM8ePBA0jqqk2ThKJfL4ePjg8OHNVfvHz58GO3avVqr9+eOCcDBUxfV31pZM3cgzuych5zoYER99365+pAbGeLT+YOQcmwF7kWsxZ51E9HApq7GMXXNTbF16Qikn1qN9FOrsXXpCCjMTNXPX76RhrOXkjB1WNdKe21UMatXLkefvv3g1KgRACA5ORkDg/rBSlEHDe2sMWvGNBQXF7+wj6KiIsycPhUN7axhpaiDt97oj9u3b2sck52djTEjh8PWSgFbKwXGjByOnJwc9fPuHh7w/VcbbPgsuLJfos6S9GP1rFmzsGXLFmzbtg3x8fGYOXMmkpOTMWnSq7N638TYCCOD/BG6L1LdJpPJEPZTFL7/7Vy5+1k9dyD6d/XEiAXb0X10MMxM5di7fpJ68wkACF0+Cp4uDTFgSggGTAmBp0tDbP14hEY/YfujMGFQR43zSBoFBQXYsX0rRo0ZBwBQqVR4s39fPHjwAEdPhCNs53f4cd9ezJ87+4X9zJ01A/t/2oewnd/h6Ilw5OfnY+CA16FSqdTHjBr+Li6cj8NPB37FTwd+xYXzcRg7arhGPyNGjsaXmzdpnFeTSfoNmcGDByMzMxMfffQRlEol3N3dcfDgq7V6P7B9SzxUqRB94Za6bfaq7wEA1pZ94N6swT/2YWFmglFB/hi7MAzHoxMAAGMWhuH6/5aim18LHImMh4uzLQLbu6HT8NX441ISAGDy0v/iZNgcNHOywfWkDADA4Yh41FPUQUefZjj5x7XKfrmkhUO//g+GhoZo6+8PADhy+DfEx1/B9YMpsLe3BwCsWLUWE8aOwodLl4leZsrNzUXo9q3YGvo1unXvAQDYtuMbNHN2wLGjR9AzIBBX4+Px26FfcTI8Cm38/AAAn3/xFbp09Me1hAQ0d3EBAPQMCERWZiZOnzqJLl27VcdbICnJJ2Tee+89JCYmoqioCDExMejUqZPUJVWrDq2b4tyVii1693Z1hNzIEEci49Vtyru5uPxnGtp6OQN4dLuEnPt/qYMRAH6/mIic+3+hrdeTzW9LHqpw8Voq2ns3qVBNVHHhp0+htY+v+nF0VCTc3NzVwQg8CqyioiLEnosR7SP2XAxKSkrQ46kNb+3t7eHm5q7e8DY6KhIKhUIdjADg17YtFAqFxqa4crkcHp5eOPOK3ING8nB81TnZ14Pybm6F+rCzskBRcQly/t7j8bGMzPuwtXo0mrC1ssDdrPwy597NyoetteaIIy0jB072VhWqiSouKSkR9es/CcI76emweWay0tLSEnK5/LnL39LT0yGXy2FpqblFnY2tLe78fc6dO+l4zcamzLmv2diU2e7MvkEDySeHqgvDUWImxnIUFj2skr5lMhme/uK82NfoZTIAz7QXFJWgtgnvTii1woICmJiYaLSJLXN7mc1rnz3nef3imXZTE1P8VfCXVr9LXzEcJZaZkw9Li9oV6iM9Mw/GciPUNTfVaH+tnhkyMh99i+hOZh5srMzLnGttaYY7mfc12iwVtXEvu+wok6qXlZU1snOy1Y9t7ezUo73HsrOzUVJS8tzlb3Z2diguLkZ2drZG+92MDPUo1NbWDhl37pQ5997du7B9ZlPc7OwsWFu/GrfYYDhK7PzV22jR2K5CfcTGJ6O45CG6t22hbrOztoBbE3tEnX800RN94RbqmteGr9uTya5/uTuhrnltRJ2/qdGfWxN7xCVoLvWg6ufl7Y2rV66oH/u19cfly5egVD7Z/f3I4d9gbGwM79Y+on14t/aBkZERjj614a1SqcTly5fUG976tfVHbm4u/vj9d/Uxv0dHIzc3t8ymuJcvX0KrVt6V8vp0HcNRYocj49GycX2NUV9jB2t4Nm8AW2sLmBobwbN5A3g2bwAjQwMAgP1rCsT9sFAddHn5hQj9MRIrZr2JLm2aw8ulIbZ9PBKXbqSp935MuHUHh85cxueLh6CNRyO08WiEzxe9i19OXlTPVAOAY/16sLdR4Pjf55F0evYMxJUrl9Wjvh49A+Dq2hJjRw1HXGwsjh87igXz52D02PHqmerU1FR4ubdQB51CocCo0WPx/rzZOH7sKOJiYzFm5DC4u3uoZ69buLoiILAXJk8aj+ioKERHRWHypPHo0/d19Uw1ACQlJiItNRVd/z6vpuNmtxK7fCMN5+KTMTCgNbbuPQMA2LR4KDr5NlMfE71rAQDApc9iJCuzYGhoABdnO5g+9U2WeWv2QqUqxTcrx8LU2AjHf0/AhOlfo7T0yfXE0f+3A2vnvYWfQyYDAH45eREzV+zRqOft3r44EnlVfasFko67hwda+/hi757dGDdhIgwMDPDD/l8wY+p76Na5PUxNTfH2O+9ixao16nMelpTgWkICCp66LrhqbTAMDA0xbMjbKCgoQNdu3fHl1lAYGBioj9kethOzZ0xDvz6PZrX7vt4fwes198Pcvetb9OgZ8MostZN8s9uKqCmb3QZ2aInlM9+Az1ufiE6aVBe5kSEu/bQYIxeEIvKZj9r6qCZsdvvr/w5iwfw5iIm7hFq1pPugV1RUBHfXZtjx9bdo1769ZHVUhvJudsuRow44FH4FTR1s0MBGgdt3ciSrw7F+PazceqhGBGNN0at3H9y4fh2pqamS7kKVnJSE+e9/oPfBqA2OHKnGqgkjR6p8enGbBCIiXcVwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISUa67D+7fv7/cHfbv3/+liyEi0hXlCsegoKBydSaTyaBSqSpSDxGRTihXOJaWllZ1HUREOqVC1xwLCwsrqw4iIp2idTiqVCosXboUDRo0gJmZGW7evAkAWLRoEbZu3VrpBRIRSUHrcFy2bBlCQ0OxatUqyOVydbuHhwe2bNlSqcUREUlF63AMCwvDl19+iaFDh8LAwEDd7unpiatXr1ZqcUREUtE6HFNTU9G0adMy7aWlpSgpKamUooiIpKZ1OLq5ueH06dNl2vfs2QNvb+9KKYqISGrlWsrztCVLlmD48OFITU1FaWkpfvjhByQkJCAsLAwHDhyoihqJiKqd1iPHfv36YdeuXTh48CBkMhkWL16M+Ph4/Pzzz+jZs2dV1EhEVO20HjkCQGBgIAIDAyu7FiIinfFS4QgAZ8+eRXx8PGQyGVxdXeHj41OZdRERSUrrcLx9+zaGDBmCM2fOoG7dugCAnJwctGvXDt9++y0cHBwqu0Yiomqn9TXHMWPGoKSkBPHx8cjKykJWVhbi4+MhCALGjh1bFTUSEVU7rUeOp0+fRkREBFxcXNRtLi4u2LBhA9q3b1+pxRERSUXrkaOjo6PoYu+HDx+iQYMGlVIUEZHUtA7HVatWYerUqTh79iwEQQDwaHJm+vTpWLNmTaUXSEQkhXJ9rLa0tIRMJlM/fvDgAfz8/GBo+Oj0hw8fwtDQEGPGjCn3xrhERLqsXOG4bt26Ki6DiEi3lCscR44cWdV1EBHplJdeBA4ABQUFZSZnLCwsKlQQEZEu0HpC5sGDB5gyZQpsbGxgZmYGS0tLjR8ioppA63CcN28ejh07hpCQEBgbG2PLli348MMPYW9vj7CwsKqokYio2mn9sfrnn39GWFgYunTpgjFjxqBjx45o2rQpnJycsHPnTgwdOrQq6iQiqlZajxyzsrLg7OwM4NH1xaysLABAhw4dcOrUqcqtjohIIlqHY+PGjZGYmAgAaNmyJXbv3g3g0Yjy8UYURET6TutwHD16NM6fPw8AWLBggfra48yZMzF37txKL5CISApaX3OcOXOm+v937doVV69exdmzZ9GkSRN4eXlVanFERFKp0DpH4NFGFI6OjpVRCxGRzihXOK5fv77cHU6bNu2liyEi0hXlCsfg4OBydSaTyRiORFQjlCscb926VdV1EBHpFK1nq4mIXgUMRyIiEQxHIiIRDEciIhEMRyIiES8VjqdPn8awYcPg7++P1NRUAMDXX3+N8PDwSi2OiEgqWofj3r17ERgYCFNTU8TGxqKoqAgAcP/+fXzyySeVXiARkRS0DsePP/4YX3zxBb766isYGRmp29u1a4dz585VanFERFLROhwTEhLQqVOnMu0WFhbIycmpjJqIiCSndTjWr18fN27cKNMeHh6Oxo0bV0pRRERS0zocJ06ciOnTpyM6OhoymQxpaWnYuXMn5syZg/fee68qaiQiqnZab1k2b9485ObmomvXrigsLESnTp1gbGyMOXPmYMqUKVVRIxFRtZMJgiC8zIl//fUXrly5gtLSUrRs2RJmZmaVXds/ysvLg0KhgLHHeMgM5NX++0m3Zf+xUeoSSAfl5eXB1kqB3NxcWFhYPPe4l97stnbt2vD19X3Z04mIdJrW4di1a1fIZLLnPn/s2LEKFUREpAu0DsdWrVppPC4pKUFcXBwuXbqEkSNHVlZdRESS0jocn7cr+H/+8x/k5+dXuCAiIl1QaRtPDBs2DNu2baus7oiIJFVp4RgZGQkTE5PK6o6ISFJaf6x+8803NR4LggClUomzZ89i0aJFlVYYEZGUtA5HhUKh8bhWrVpwcXHBRx99hICAgEorjIhISlqFo0qlwqhRo+Dh4YF69epVVU1ERJLT6pqjgYEBAgMDkZubW1X1EBHpBK0nZDw8PHDz5s2qqIWISGdoHY7Lli3DnDlzcODAASiVSuTl5Wn8EBHVBFpPyPTq1QsA0L9/f42vEQqCAJlMBpVKVXnVERFJROtwPH78eFXUQUSkU7QOR2dnZzg4OJTZfEIQBKSkpFRaYUREUtL6mqOzszPu3r1bpj0rKwvOzs6VUhQRkdS0DsfH1xaflZ+fz68PElGNUe6P1bNmzQIAyGQyLFq0CLVr11Y/p1KpEB0dXWY7MyIifVXucIyNjQXwaOR48eJFyOVPbksgl8vh5eWFOXPmVH6FREQSKHc4Pp6lHj16ND777LMX3nuBiEjfaT1bvX379qqog4hIp1Tafo5ERDUJw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMNRz8wZE4Dwb+YiI3wNko4ux+5Px6OZk02Z41ycbbFn3USkn1qNjPA1OLljNhzsLCWomKS2eVMIWjRzRl0zE7Rr44Pw8NNSl6QXGI56pmPrpvhi1yl0HrEGr/97IwwMDHBg0xTUNnlyN0jnhtY4um0Wrt1KR+D4z9Bm8HIs/+pXFBaVSFg5SWHP7l2YO3sG5r//AaL+iEW7Dh0R9HpvJCcnS12azpMJgiBIXcTLysvLg0KhgLHHeMgM5P98Qg1kbWmGlGMr0GNsMM6c+xMAELZiNEpKVBi7KEzi6qSV/cdGqUuQXMd2fvD2bo31n29St7XycEW//kFYumy5hJVJJy8vD7ZWCuTm5r7wLqocOeo5CzMTAEB27l8AAJlMhl4d3HA9OQP7P5+MpKPLcSpsDvp18ZSyTJJAcXExYs/FoHvPAI327j0CEBUZIVFV+oPhqOdWzh6IM+du4MqfSgCATT0zmNcxwZzRPXE44gr6/Xsj9h8/j+/WjkMHn6YSV0vV6d69e1CpVLCxsdVot7W1xZ076RJVpT+0vm816Y7g99+GRzN7dB8drG6rVevRf+8OnLiIDTuPAwAuXEuFn1djjH+rA8JjbkhSK0lHJpNpPBYEoUwblcWRo576dP4gvN7ZA4Hj1yM1I0fdfi87HyUlKsTfVGocn3AznbPVrxhra2sYGBiUGSVmZGSUGU1SWQxHPRQ8fxAGdPNCr4nrkZSWqfFcyUMVYq4kobmT5h9/MycbJCuzq7NMkphcLod3ax8cO3JYo/3Y0cNo699Ooqr0Bz9W65l1C97G4N6+GDTzS+Q/KIStlTkAIDe/UL1UJ3jHEXy9cgzCz93AybPXENCuJfp0ckfg+M+kLJ0kMG3GLIwdNRytfXzh19YfW7d8iZTkZIybMEnq0nQel/LomYJY8eUp4xd/jW9+jlY/HjGgLeaOCUADm7q4lpSBj7/4BQdOXKyuMnUCl/I8snlTCD5duwrpSiXc3Nyxam0wOnTsJHVZkinvUh5Jw/HUqVNYvXo1YmJioFQqsW/fPgQFBZX7/FcxHKn8GI4kRi/WOT548ABeXl7YuJF/xESkWyS95ti7d2/07t273McXFRWhqKhI/TgvL68qyiIi0q/Z6uXLl0OhUKh/HBwcpC6JiGoovQrHBQsWIDc3V/2TkpIidUlEVEPp1VIeY2NjGBsbS10GEb0C9GrkWFPVU9RB0tHlcKxfT9I63Jra48avSzW2PyNpZWZmwtHeBkmJiZLWceniRTRp1BAPHjyQtI7qxHDUAXPHBODgqYtIVmYBANbMHYgzO+chJzoYUd+9X64+5EaG+HT+IKQcW4F7EWuxZ91ENLCpq3FMXXNTbF06AumnViP91GpsXToCCjNT9fOXb6Th7KUkTB3WtdJeG1XM6pXL0advPzg1agQASE5OxsCgfrBS1EFDO2vMmjENxcXFL+yjqKgIM6dPRUM7a1gp6uCtN/rj9u3bGsdkZ2djzMjhsLVSwNZKgTEjhyMnJ0f9vLuHB3z/1QYbPgvGq0LScMzPz0dcXBzi4uIAALdu3UJcXNwrtRGnibERRgb5I3RfpLpNJpMh7KcofP/buXL3s3ruQPTv6okRC7aj++hgmJnKsXf9JNSq9WSDgdDlo+Dp0hADpoRgwJQQeLo0xNaPR2j0E7Y/ChMGddQ4j6RRUFCAHdu3YtSYcQAAlUqFN/v3xYMHD3D0RDjCdn6HH/ftxfy5s1/Yz9xZM7D/p30I2/kdjp4IR35+PgYOeB0qlUp9zKjh7+LC+Tj8dOBX/HTgV1w4H4exo4Zr9DNi5Gh8uXmTxnk1maThePbsWXh7e8Pb2xsAMGvWLHh7e2Px4sVSllWtAtu3xEOVCtEXbqnbZq/6Hpt3n8Kt25kvOPMJCzMTjAryx/uf7sPx6AScT7iNMQvD4N7UHt38WgB4dNuEwPZueO+jnYi+cAvRF25h8tL/om9nD43bLByOiEc9RR109GlWuS+UtHbo1//B0NAQbf39AQBHDv+G+Pgr2LbjG7Ty9ka37j2wYtVabN/61XOXteXm5iJ0+1asWLUW3br3QCtvb2zb8Q0uXbqIY0ePAACuxsfjt0O/ImTzFrT190dbf398/sVXOPjLAVxLSFD31TMgEFmZmTh96mTVv3gdIGk4dunSBYIglPkJDQ2Vsqxq1aF1U5y7UrGRsrerI+RGhjgSGa9uU97NxeU/09DWyxkA4OfpjJz7f+GPS0nqY36/mIic+3+hrVdjdVvJQxUuXktFe+8mFaqJKi789Cm09vFVP46OioSbmzvs7e3VbT0DAlFUVITYczGifcSei0FJSQl6PLXhrb29Pdzc3NUb3kZHRUKhUKCNn5/6GL+2baFQKDQ2xZXL5fDw9MKZV+QeNLzmKDEn+3pQ3s2tUB92VhYoKi5Bzv0CjfaMzPuwtXr09ShbKwvczcovc+7drHzYWmt+hSotIwdO9lYVqokqLikpEfXrPwnCO+npsLHV3G3J0tIScrkc6enim9emp6dDLpfD0lJzuzobW1vc+fucO3fS8ZpN2Zu0vWZjU2a7M/sGDSSfHKouDEeJmRjLUVj0sEr6lslkePqL82Jfo5fJADzTXlBUgtomRlVSE5VfYUEBTExMNNrENql9mc1rnz3nef3imXZTE1P8VfCXVr9LXzEcJZaZkw9Li9oV6iM9Mw/GciPUNTfVaH+tnhkyMh9di7qTmQebv7c3e5q1pRnuZN7XaLNU1Ma97LKjTKpeVlbWyM55sgenrZ2derT3WHZ2NkpKSmBrK755rZ2dHYqLi5GdrbmX592MDPUo1NbWDhl37pQ5997du7B9ZlPc7OwsWFu/9lKvR98wHCV2/upttGhsV6E+YuOTUVzyEN3btlC32VlbwK2JPaLOP5roib5wC3XNa8PXzUl9zL/cnVDXvDaizt/U6M+tiT3iEjSXelD18/L2xtUrV9SP/dr64/LlS1Aqn+zyfuTwbzA2NoZ3ax/RPrxb+8DIyAhHn9rwVqlU4vLlS+oNb/3a+iM3Nxd//P67+pjfo6ORm5tbZlPcy5cvoVUr70p5fbqO4Sixw5HxaNm4vsaor7GDNTybN4CttQVMjY3g2bwBPJs3gJGhAQDA/jUF4n5YqA66vPxChP4YiRWz3kSXNs3h5dIQ2z4eiUs30nAs+ioAIOHWHRw6cxmfLx6CNh6N0MajET5f9C5+OXkR15My1L/bsX492NsocPzv80g6PXsG4sqVy+pRX4+eAXB1bYmxo4YjLjYWx48dxYL5czB67Hj11lupqanwcm+hDjqFQoFRo8fi/XmzcfzYUcTFxmLMyGFwd/dAt+49AAAtXF0RENgLkyeNR3RUFKKjojB50nj06fs6mru4qOtJSkxEWmoquv59Xk2nV18frIku30jDufhkDAxoja17zwAANi0eik6+T5bSRO9aAABw6bMYycosGBoawMXZDqZPfZNl3pq9UKlK8c3KsTA1NsLx3xMwYfrXKC19cj1x9P/twNp5b+HnkMkAgF9OXsTMFXs06nm7ty+ORF7lLRV0gLuHB1r7+GLvnt0YN2EiDAwM8MP+XzBj6nvo1rk9TE1N8fY772LFqjXqcx6WlOBaQgIKnrouuGptMAwMDTFsyNsoKChA127d8eXWUBgYGKiP2R62E7NnTEO/Po9mtfu+3h/B6zW3Ety961v06BkAJycnvAq4E7gOCOzQEstnvgGftz4RnTSpLnIjQ1z6aTFGLghF5DMftfVRTdjs9tf/HcSC+XMQE3dJfWdJKRQVFcHdtRl2fP0t2rVvL1kdlaG8m91y5KgDDoVfQVMHGzSwUeD2nRzJ6nCsXw8rtx6qEcFYU/Tq3Qc3rl9HamqqpFv0JSclYf77H+h9MGqDI0eqsWrCyJEqn17cJoGISFcxHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRBhKXUBFCILw6H9VxRJXQrooLy9P6hJIB93/++/icX48j0z4pyN02O3bt+Hg4CB1GUSkh1JSUtCwYcPnPq/X4VhaWoq0tDSYm5tDJpNJXY7k8vLy4ODggJSUFFhYWEhdDukI/l1oEgQB9+/fh729PWrVev6VRb3+WF2rVq0XJv+rysLCgv8IqAz+XTyhUCj+8RhOyBARiWA4EhGJYDjWIMbGxliyZAmMjY2lLoV0CP8uXo5eT8gQEVUVjhyJiEQwHImIRDAciYhEMByJiEQwHGuIkJAQODs7w8TEBD4+Pjh9+rTUJZHETp06hX79+sHe3h4ymQw//vij1CXpFYZjDbBr1y7MmDEDH3zwAWJjY9GxY0f07t0bycnJUpdGEnrw4AG8vLywceNGqUvRS1zKUwP4+fmhdevW2LRpk7rN1dUVQUFBWL58uYSVka6QyWTYt28fgoKCpC5Fb3DkqOeKi4sRExODgIAAjfaAgABERERIVBWR/mM46rl79+5BpVLB1tZWo93W1hbp6ekSVUWk/xiONcSzW7YJgsBt3IgqgOGo56ytrWFgYFBmlJiRkVFmNElE5cdw1HNyuRw+Pj44fPiwRvvhw4fRrl07iaoi0n96vdktPTJr1iwMHz4cvr6+8Pf3x5dffonk5GRMmjRJ6tJIQvn5+bhx44b68a1btxAXF4d69erB0dFRwsr0A5fy1BAhISFYtWoVlEol3N3dERwcjE6dOkldFknoxIkT6Nq1a5n2kSNHIjQ0tPoL0jMMRyIiEbzmSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UiSatSoEdatW6d+LNV2/v/5z3/QqlWr5z5/4sQJyGQy5OTklLvPLl26YMaMGRWqKzQ0FHXr1q1QH/RyGI6kU5RKJXr37l2uY/8p0IgqghtPUIUVFxdDLpdXSl92dnaV0g9RRXHkSBq6dOmCKVOmYMqUKahbty6srKywcOFCPP0V/EaNGuHjjz/GqFGjoFAoMH78eABAREQEOnXqBFNTUzg4OGDatGl48OCB+ryMjAz069cPpqamcHZ2xs6dO8v8/mc/Vt++fRvvvPMO6tWrhzp16sDX1xfR0dEIDQ3Fhx9+iPPnz0Mmk0Emk6k3U8jNzcWECRNgY2MDCwsLdOvWDefPn9f4PStWrICtrS3Mzc0xduxYFBYWavU+ZWZmYsiQIWjYsCFq164NDw8PfPvtt2WOe/jw4Qvfy+LiYsybNw8NGjRAnTp14OfnhxMnTmhVC1UNhiOVsWPHDhgaGiI6Ohrr169HcHAwtmzZonHM6tWr4e7ujpiYGCxatAgXL15EYGAg3nzzTVy4cAG7du1CeHg4pkyZoj5n1KhRSExMxLFjx/D9998jJCQEGRkZz60jPz8fnTt3RlpaGvbv34/z589j3rx5KC0txeDBgzF79my4ublBqVRCqVRi8ODBEAQBffv2RXp6Og4ePIiYmBi0bt0a3bt3R1ZWFgBg9+7dWLJkCZYtW4azZ8+ifv36CAkJ0eo9KiwshI+PDw4cOIBLly5hwoQJGD58OKKjo7V6L0ePHo0zZ87gu+++w4ULFzBo0CD06tUL169f16oeqgIC0VM6d+4suLq6CqWlpeq2+fPnC66ururHTk5OQlBQkMZ5w4cPFyZMmKDRdvr0aaFWrVpCQUGBkJCQIAAQoqKi1M/Hx8cLAITg4GB1GwBh3759giAIwubNmwVzc3MhMzNTtNYlS5YIXl5eGm1Hjx4VLCwshMLCQo32Jk2aCJs3bxYEQRD8/f2FSZMmaTzv5+dXpq+nHT9+XAAgZGdnP/eYPn36CLNnz1Y//qf38saNG4JMJhNSU1M1+unevbuwYMECQRAEYfv27YJCoXju76Sqw2uOVEbbtm017j/j7++PtWvXQqVSwcDAAADg6+urcU5MTAxu3Lih8VFZEASUlpbi1q1buHbtGgwNDTXOa9GixQtnYuPi4uDt7Y169eqVu/aYmBjk5+fDyspKo72goAB//vknACA+Pr7MRsD+/v44fvx4uX+PSqXCihUrsGvXLqSmpqKoqAhFRUWoU6eOxnEvei/PnTsHQRDQvHlzjXOKiorK1E/Vj+FIL+XZECgtLcXEiRMxbdq0Msc6OjoiISEBQNkbgb2Iqamp1nWVlpaifv36otftKnNJzNq1axEcHIx169bBw8MDderUwYwZM1BcXKxVrQYGBoiJiVH/R+cxMzOzSquVXg7DkcqIiooq87hZs2Zl/gE/rXXr1rh8+TKaNm0q+ryrqysePnyIs2fPok2bNgCAhISEF64b9PT0xJYtW5CVlSU6epTL5VCpVGXqSE9Ph6GhIRo1avTcWqKiojBixAiN16iN06dPY8CAARg2bBiAR0F3/fp1uLq6ahz3ovfS29sbKpUKGRkZ6Nixo1a/n6oeJ2SojJSUFMyaNQsJCQn49ttvsWHDBkyfPv2F58yfPx+RkZGYPHky4uLicP36dezfvx9Tp04FALi4uKBXr14YP348oqOjERMTg3Hjxr1wdDhkyBDY2dkhKCgIZ86cwc2bN7F3715ERkYCeDRr/vi+KPfu3UNRURF69OgBf39/BAUF4dChQ0hMTERERAQWLlyIs2fPAgCmT5+Obdu2Ydu2bbh27RqWLFmCy5cva/UeNW3aFIcPH0ZERATi4+MxceJE0fuEv+i9bN68OYYOHYoRI0bghx9+wK1bt/DHH39g5cqVOHjwoFb1UBWQ+qIn6ZbOnTsL7733njBp0iTBwsJCsLS0FN5//32NSQUnJyeNSZTHfv/9d6Fnz56CmZmZUKdOHcHT01NYtmyZ+nmlUin07dtXMDY2FhwdHYWwsLAyfeGpCRlBEITExERh4MCBgoWFhVC7dm3B19dXiI6OFgRBEAoLC4WBAwcKdevWFQAI27dvFwRBEPLy8oSpU6cK9vb2gpGRkeDg4CAMHTpUSE5OVve7bNkywdraWjAzMxNGjhwpzJs3T6sJmczMTGHAgAGCmZmZYGNjIyxcuFAYMWKEMGDAAK3ey+LiYmHx4sVCo0aNBCMjI8HOzk544403hAsXLgiCwAkZKfEeMqShS5cuaNWqlcZX+oheRfxYTUQkguFIRCSCH6uJiERw5EhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQk4v8B7YgKY252X9IAAAAASUVORK5CYII=",
1463
  "text/plain": [
1464
- "<Figure size 350x350 with 1 Axes>"
1465
  ]
1466
  },
1467
  "metadata": {},
@@ -1494,7 +1474,7 @@
1494
  "\n",
1495
  "#change the size of the graph\n",
1496
  "\n",
1497
- "plt.rcParams['figure.figsize'] = [3.5, 3.5]\n",
1498
  "\n",
1499
  "fig, ax = plot_confusion_matrix(\n",
1500
  " conf_mat=conf_matrix,\n",
@@ -1504,11 +1484,58 @@
1504
  ]
1505
  },
1506
  {
1507
- "attachments": {},
1508
- "cell_type": "markdown",
1509
- "metadata": {},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510
  "source": [
1511
- "#### **Plot Evaluation**"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1512
  ]
1513
  }
1514
  ],
 
26
  },
27
  {
28
  "cell_type": "code",
29
+ "execution_count": 139,
30
  "metadata": {
31
  "slideshow": {
32
  "slide_type": "skip"
 
53
  },
54
  {
55
  "cell_type": "code",
56
+ "execution_count": 140,
57
  "metadata": {
58
  "slideshow": {
59
  "slide_type": "skip"
 
64
  "data": {
65
  "application/mercury+json": {
66
  "allow_download": true,
67
+ "code_uid": "App.0.40.24.1-rand99a3439b",
68
  "continuous_update": false,
69
  "description": "Recumpute everything dynamically",
70
  "full_screen": true,
 
96
  },
97
  {
98
  "cell_type": "code",
99
+ "execution_count": 141,
100
  "metadata": {
101
  "slideshow": {
102
  "slide_type": "skip"
 
138
  },
139
  {
140
  "cell_type": "code",
141
+ "execution_count": 142,
142
  "metadata": {
143
  "slideshow": {
144
  "slide_type": "skip"
 
195
  },
196
  {
197
  "cell_type": "code",
198
+ "execution_count": 143,
199
  "metadata": {
200
  "slideshow": {
201
  "slide_type": "skip"
 
290
  },
291
  {
292
  "cell_type": "code",
293
+ "execution_count": 144,
294
  "metadata": {
295
  "slideshow": {
296
  "slide_type": "skip"
 
341
  },
342
  {
343
  "cell_type": "code",
344
+ "execution_count": 145,
345
  "metadata": {
346
  "slideshow": {
347
  "slide_type": "skip"
 
419
  },
420
  {
421
  "cell_type": "code",
422
+ "execution_count": 146,
423
  "metadata": {
424
  "slideshow": {
425
  "slide_type": "skip"
 
499
  },
500
  {
501
  "cell_type": "code",
502
+ "execution_count": 147,
503
  "metadata": {
504
  "slideshow": {
505
  "slide_type": "skip"
 
585
  },
586
  {
587
  "cell_type": "code",
588
+ "execution_count": 148,
589
  "metadata": {
590
  "slideshow": {
591
  "slide_type": "skip"
 
648
  },
649
  {
650
  "cell_type": "code",
651
+ "execution_count": 149,
652
  "metadata": {
653
  "slideshow": {
654
  "slide_type": "skip"
 
737
  },
738
  {
739
  "cell_type": "code",
740
+ "execution_count": 150,
741
  "metadata": {
742
  "slideshow": {
743
  "slide_type": "skip"
 
750
  "from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score\n",
751
  "\n",
752
  "def evaluate_models(model='random_forest'):\n",
 
 
 
 
 
 
 
753
  "\n",
754
  " all_models = ['random_forest', 'logistic_regression', 'knn', 'svm', 'naive_bayes', 'decision_tree', 'xgboost']\n",
755
  " evaluation_score_append = []\n",
 
818
  },
819
  {
820
  "cell_type": "code",
821
+ "execution_count": 151,
822
  "metadata": {
823
  "slideshow": {
824
  "slide_type": "skip"
 
832
  "yes",
833
  "no"
834
  ],
835
+ "code_uid": "Select.0.40.16.25-rand28de2701",
836
  "disabled": false,
837
  "hidden": false,
838
  "label": "Drop Duplicates",
839
+ "model_id": "1b5513f0c74f4b789b06e528c0702927",
840
  "url_key": "",
841
  "value": "yes",
842
  "widget": "Select"
843
  },
844
  "application/vnd.jupyter.widget-view+json": {
845
+ "model_id": "1b5513f0c74f4b789b06e528c0702927",
846
  "version_major": 2,
847
  "version_minor": 0
848
  },
 
856
  {
857
  "data": {
858
  "application/mercury+json": {
859
+ "code_uid": "Text.0.40.15.28-rand47e76187",
860
  "disabled": false,
861
  "hidden": false,
862
  "label": "Missing Value Threeshold",
863
+ "model_id": "d938d6a0b2744021b8a2869fc3ed8d56",
864
  "rows": 1,
865
  "url_key": "",
866
  "value": "80",
867
  "widget": "Text"
868
  },
869
  "application/vnd.jupyter.widget-view+json": {
870
+ "model_id": "d938d6a0b2744021b8a2869fc3ed8d56",
871
  "version_major": 2,
872
  "version_minor": 0
873
  },
 
881
  {
882
  "data": {
883
  "application/mercury+json": {
884
+ "code_uid": "Text.0.40.15.31-randbeb3d20d",
885
  "disabled": false,
886
  "hidden": false,
887
  "label": "Variance Threshold",
888
+ "model_id": "7628bd791a434d4881994be8f0e7e104",
889
  "rows": 1,
890
  "url_key": "",
891
  "value": "0",
892
  "widget": "Text"
893
  },
894
  "application/vnd.jupyter.widget-view+json": {
895
+ "model_id": "7628bd791a434d4881994be8f0e7e104",
896
  "version_major": 2,
897
  "version_minor": 0
898
  },
 
906
  {
907
  "data": {
908
  "application/mercury+json": {
909
+ "code_uid": "Text.0.40.15.34-rand7204e09b",
910
  "disabled": false,
911
  "hidden": false,
912
  "label": "Correlation Threshold",
913
+ "model_id": "9c36001207a9406290a44dfbd27296e2",
914
  "rows": 1,
915
  "url_key": "",
916
  "value": "1",
917
  "widget": "Text"
918
  },
919
  "application/vnd.jupyter.widget-view+json": {
920
+ "model_id": "9c36001207a9406290a44dfbd27296e2",
921
  "version_major": 2,
922
  "version_minor": 0
923
  },
 
937
  4,
938
  5
939
  ],
940
+ "code_uid": "Select.0.40.16.38-rand6c036095",
941
  "disabled": false,
942
  "hidden": false,
943
  "label": "Outlier Removal Threshold",
944
+ "model_id": "deea9036e1dd45bdaf729893fb2c03ad",
945
  "url_key": "",
946
  "value": "none",
947
  "widget": "Select"
948
  },
949
  "application/vnd.jupyter.widget-view+json": {
950
+ "model_id": "deea9036e1dd45bdaf729893fb2c03ad",
951
  "version_major": 2,
952
  "version_minor": 0
953
  },
 
968
  "minmax",
969
  "robust"
970
  ],
971
+ "code_uid": "Select.0.40.16.46-rand6e19100d",
972
  "disabled": false,
973
  "hidden": false,
974
  "label": "Scaling Variables",
975
+ "model_id": "74c9a2bf7d774007a6e0aaee3c77b47a",
976
  "url_key": "",
977
  "value": "none",
978
  "widget": "Select"
979
  },
980
  "application/vnd.jupyter.widget-view+json": {
981
+ "model_id": "74c9a2bf7d774007a6e0aaee3c77b47a",
982
  "version_major": 2,
983
  "version_minor": 0
984
  },
 
998
  "knn",
999
  "most_frequent"
1000
  ],
1001
+ "code_uid": "Select.0.40.16.50-rand44961a40",
1002
  "disabled": false,
1003
  "hidden": false,
1004
  "label": "Imputation Methods",
1005
+ "model_id": "e7d32db61422400db77aed46104991be",
1006
  "url_key": "",
1007
  "value": "mean",
1008
  "widget": "Select"
1009
  },
1010
  "application/vnd.jupyter.widget-view+json": {
1011
+ "model_id": "e7d32db61422400db77aed46104991be",
1012
  "version_major": 2,
1013
  "version_minor": 0
1014
  },
 
1029
  "pca",
1030
  "boruta"
1031
  ],
1032
+ "code_uid": "Select.0.40.16.55-rand17be4326",
1033
  "disabled": false,
1034
  "hidden": false,
1035
  "label": "Feature Selection",
1036
+ "model_id": "fecc32733d914aff9b0ad61cd4b7b6b5",
1037
  "url_key": "",
1038
  "value": "none",
1039
  "widget": "Select"
1040
  },
1041
  "application/vnd.jupyter.widget-view+json": {
1042
+ "model_id": "fecc32733d914aff9b0ad61cd4b7b6b5",
1043
  "version_major": 2,
1044
  "version_minor": 0
1045
  },
 
1059
  "undersampling",
1060
  "rose"
1061
  ],
1062
+ "code_uid": "Select.0.40.16.59-rand8b476756",
1063
  "disabled": false,
1064
  "hidden": false,
1065
  "label": "Imbalance Treatment",
1066
+ "model_id": "e9479d12145f46009daeac5020fcea48",
1067
  "url_key": "",
1068
  "value": "none",
1069
  "widget": "Select"
1070
  },
1071
  "application/vnd.jupyter.widget-view+json": {
1072
+ "model_id": "e9479d12145f46009daeac5020fcea48",
1073
  "version_major": 2,
1074
  "version_minor": 0
1075
  },
 
1092
  "decision_tree",
1093
  "xgboost"
1094
  ],
1095
+ "code_uid": "Select.0.40.16.64-randaa2cafdf",
1096
  "disabled": false,
1097
  "hidden": false,
1098
  "label": "Model Selection",
1099
+ "model_id": "a17088a739d847fcad51c1efc4aae6ff",
1100
  "url_key": "",
1101
  "value": "random_forest",
1102
  "widget": "Select"
1103
  },
1104
  "application/vnd.jupyter.widget-view+json": {
1105
+ "model_id": "a17088a739d847fcad51c1efc4aae6ff",
1106
  "version_major": 2,
1107
  "version_minor": 0
1108
  },
 
1210
  },
1211
  {
1212
  "cell_type": "code",
1213
+ "execution_count": 152,
1214
  "metadata": {
1215
  "slideshow": {
1216
  "slide_type": "skip"
 
1291
  },
1292
  {
1293
  "cell_type": "code",
1294
+ "execution_count": 153,
1295
  "metadata": {
1296
  "slideshow": {
1297
  "slide_type": "skip"
 
1329
  },
1330
  {
1331
  "cell_type": "code",
1332
+ "execution_count": 154,
1333
  "metadata": {
1334
  "slideshow": {
1335
  "slide_type": "slide"
1336
  }
1337
  },
1338
  "outputs": [
 
 
 
 
 
 
 
 
 
 
 
 
 
1339
  {
1340
  "data": {
1341
  "text/html": [
 
1439
  },
1440
  {
1441
  "data": {
1442
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAHACAYAAAA7jMYcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvfElEQVR4nO3deViU9f7/8dcIgrgwLgSKolIuoaIifkUsTTNBLc1vtp5yT+ukprkef6Wd03I0zbTNTuXe8VvWaTOzxVxyhRLFFVGPC4ogCghiCAjz+8OanHBhZHDyw/NxXVynubnvm/dwHX16z9xz3xabzWYTAAAGq+DuAQAAKGvEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxPN09QGkUFRXp+PHjqlatmiwWi7vHAQBcRzabTWfOnFFgYKAqVLjysdsNHbvjx48rKCjI3WMAANzo6NGjqlev3hXXuaFjV61aNUmSV7MBsnh4uXka4PpLWvuqu0cA3OZMdrYaBQfZW3AlN3Tsfnvp0uLhRexQLvn6+rp7BMDtSvI2FieoAACMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesYODoQ/crp+WTtKJ9TN0Yv0MrV00VlG3NXNYp2lwgD6Z/YRS181Q2oZX9eOisQqqXcNhnYiWwfrm3ZE6tWmmUtZN13fvj1Il74rX86kAZerdd+bo1sbBql61kjq0C9eGDevdPRKuwNPdA+DPJfnEaU1+80v9N+mUJOmxXhH6ZNYwtX94mhIOpiq4np9WzR+jRV9s0kvvfK2snFzdGlxb5/IK7PuIaBmsL996Sq8u+F5jXvlE+ecL1bJJXRUV2dz1tACX+uTjpRo/drRef3OOIjvcprnvv6s+9/TQ1h17VL9+fXePh0uw2Gy2G/ZvoOzsbFmtVnmHDpXFw8vd4xgree0r+n+zv9CiLzZr8bRBKigo1JDJiy+7/o+LxmpV7F69MOfr6zhl+ZT581vuHqFc6tghQmFhbfTG2+/Yl7UODVGv3n304stT3ThZ+ZKdna2AWlZlZWXJ19f3iuvyMiYuq0IFix6IDlcVHy/F7jgki8Wi7rc31/6kNC17e7iOrJqqdYvHqVfnlvZtbqpRVe1aButkRo7WLByjwz/8U9/PHaUOrW924zMBXCc/P1/btsapa7coh+Vd74pSzOZNbpoKV0PsUEzzRoE6uXGmsmJn641nH9JDY9/X3oOp8q9ZVdWqVNK4Qd20ctMe9frrW1q2Zrs+mvm4bg9vJEkKrucnSXr2iZ6a/9km3Tt8juITjmrFuyN1S/2b3Pm0AJc4deqUCgsL5e8f4LA8ICBAJ06kumkqXA3v2aGYfYdPKOLhqaperbL6dG2t91/op6jHX1fWmVxJ0vK1O/XmkjWSpB37khXR6mYNvf92bYg7oAoVLJKkeZ9u0AfLYiRJ2xOPqXO7phpwb6SmvLnMPU8KcDGLxeLw2GazFVuGPw+O7FBMwflCHTx6Slv3JGnKm8u0c1+yhj/SWacyc1RQUKiEgykO6yceTLWfjZlyMluSlHDQ8V+4iYdSi52xCdyI/Pz85OHhUewoLi0trdjRHv48iB2uyiKLvL08VXC+UHF7jqhJA8c/0I0b+CspJVOSdOR4uo6nnVaThv4O6zRq4K+klIzrNjNQVry8vBTWJlyrf1jpsHz1qpVqH9nBTVPhangZEw7+MaKXvt+4R0dTM1WtSiU9EB2uTm0bq/fwOZKkWYt+0AevDNaGrQf045Z9iurQTD07tVD00Nft+5i16Ac99+Td2rkvWdsTj+mxXhFq2jBAfxk/z11PC3Cpp0eP0ZCB/dQmvK0i2kdq3tz3dDQpSY8Pe9Ldo+EyiB0c+Neqpnkv9VdtP19l5ZzTrv3J6j18jlbH7pUkLVuzQyNf/kjjB0dp5oT7te9Imh4ZP1eb4g/a9/HW/61VJe+Kmj62r2pYK2vnvmTd89e3dOjYKXc9LcClHnjwIWWkp+ufL7+g1JQUNW/eQl98tUINGjRw92i4DLd/zm7OnDmaMWOGUlJS1Lx5c82ePVsdO3Ys0bZ8zg7lHZ+zQ3l2w3zObunSpRo9erSeffZZbdu2TR07dlSPHj2UlJTkzrEAAIZxa+xee+01DRkyRI8//rhCQkI0e/ZsBQUF6Z133rn6xgAAlJDbYpefn6+4uDhFRTlehSAqKkqbNl36KgR5eXnKzs52+AIA4GrcFrvfrkIQEFD8KgSpqZe+CsHUqVNltVrtX0FBQddjVADADc7tn7Nz5ioEkyZNUlZWlv3r6NGj12NEAMANzm2x++0qBH88iktLSyt2tPcbb29v+fr6Onzh2tS0VtGRVVNVv05Nt87RvFGgDnz7oipX4mxaXD/p6emqH+ivI4cPu3WOXTt36paG9XT27Fm3zlEeuC12Xl5eCg8P18qVjlchWLlypTp04CoEZW384CitWLfTflWTV8f31cYlE3Q6dpZiPvpbifbhVdFTr018QEdXT9OpTTP1yewnVNe/usM61av5aN6L/ZW6boZS183QvBf7y1rVx/793QeOa8uuIxr5WBeXPTfgama8MlU97+6lBg0bSpKSkpLUt08v1bJWUb3afhoz+mnl5+dfcR95eXl6ZtRI1avtp1rWKrr/f3vr2LFjDutkZmZq8IB+CqhlVUAtqwYP6KfTp0/bv98iNFRt/6ed3nx9lqufIv7ArS9jjhkzRnPnztX8+fOVkJCgZ555RklJSXrySa5CUJYqeVfUgD6RWvj5Zvsyi8WixV/G6D/fby3xfmaM76veXVqq/6QF6jpolqr6eOnTN560XwxakhZOHaiWTevp3hFzdO+IOWrZtJ7mvdTfYT+Ll8Vo2AMdHbYDykpubq4WLZingYMflyQVFhbqvt536+zZs1q1doMWL/lIX3z+qSaOH3vF/YwfM1rLvvxci5d8pFVrNygnJ0d9771HhYWF9nUG9vuLdmyP15fLv9WXy7/Vju3xGjKwn8N++g8YpPfefcdhO7ieW6+g8tBDDyk9PV0vvPCCUlJS1KJFC61YwVUIylr0bc10vrBQsTsO2ZeNnf4fSZJfjZ5q0bjuVffhW7WSBvaJ1JDnFmtNbKIkafBzi7X/mxd1Z8St+mFzgpoGByj6tubq1G+Gft51RJI0/MX/04+Lx6lxA3/tP5ImSVq5KUE1rVXUMbyxfvx5n6ufLuDgu2+/kaenp9pHRkqSflj5vRIS9mj/iqMKDAyUJE2bPlPDhgzUP158+ZJvl2RlZWnhgnmat/AD3dn1LknS/EX/VuPgIK1e9YO6RUVrb0KCvv/uW/24IUbtIiIkSW//63117hipfYmJatK0qSSpW1S0MtLTtX7dj+rc5c7r8Ssol9x+gspTTz2lw4cPKy8vT3FxcerUqZO7RzLe7W0aaeue0n1wPyykvrwqeuqHzQn2ZSkns7T7v8fVvlWwJCmiZbBOn/nFHjpJ+mnnYZ0+84vat/r9Zq4F5wu1c1+ybgu7pVQzASWxYf06tQlva38cG7NZzZu3sIdOuhCgvLw8bdsad8l9bNsap4KCAt110Q1cAwMD1bx5C/sNXGNjNstqtdpDJ0kR7dvLarU63OTVy8tLoS1baeOG9S57jijO7bHD9dcgsKZSTmaVah+1a/kqL79Ap3+9x91v0tLPKKDWhX8JB9Ty1cmMnGLbnszIUYCf47+Wj6edVoPAWqWaCSiJI0cOq06d38N2IjVV/n84Ka5GjRry8vK67MegUlNT5eXlpRo1HG9b5R8QoBO/bnPiRKpu8vcvtu1N/v7Fbg8UWLeu20+WMR2xK4cqeXvpXN75Mtm3xWLRxRdbvdSlVy0WSX9YnptXoMqVKpbJTMDFzuXmqlKlSg7LLvVxp2u5Gesft7ncfvWH5T6VfPRL7i9O/Sw4h9iVQ+mnc1TDt3Kp9pGani1vr4qqXs3HYflNNasqLf3ClW1OpGfLv1a1Ytv61aiqE+lnHJbVsFbWqcziR4GAq9Wq5afM05n2xwG1a9uPxn6TmZmpgoKCy34Mqnbt2srPz1dmZqbD8pNpafajxICA2ko7caLYtqdOnlTAH27ympmZIT+/m67p+aBkiF05tH3vMd16c+1S7WNbQpLyC86ra/tb7ctq+/mq+S2Bitl+4cSX2B2HVL1aZbVt/vsJR//TooGqV6usmO0HHfbX/JZAxSc6nrYNlIVWYWHau2eP/XFE+0jt3r1LKSkp9mU/rPxe3t7eCmsTfsl9hLUJV8WKFbXqohu4pqSkaPfuXfYbuEa0j1RWVpZ+/ukn+zo/xcYqKyur2E1ed+/epdatw1zy/HBpxK4cWrk5Qc1uruNwVHZzkJ9aNqmrAD9f+XhXVMsmddWySV1V9PSQJAXeZFX8Z8/Zw5Wdc04Lv9isaWPuU+d2TdSqaT3Nf2mAdh04br/3XeKhE/pu4269PeURtQttqHahDfX25L/o6x932s/ElKT6dWoq0N+qNb9uB5Slbt2itWfPbvtR2V3dohQS0kxDBvZT/LZtWrN6lSZNHKdBQ4baz8RMTk5Wqxa32sNltVo1cNAQ/W3CWK1ZvUrx27Zp8IDH1KJFqP3szFtDQhQV3V3Dnxyq2JgYxcbEaPiTQ9Xz7nvsZ2JK0pHDh3U8OVldft0OZYObt5ZDuw8c19aEJPWNaqN5n26UJL0z5VF1atvYvk7s0kmSpKY9pygpJUOenh5qGlxbPhdd6WTCq5+qsLBI/35liHy8K2rNT4kaNuoDFRX9/n7coP+3SDMn3K+v5gyXJH394049M+0Th3ke7NFWP2zeq6QUx5eEgLLQIjRUbcLb6tNPPtbjw56Qh4eHPlv2tUaPfEp33nGbfHx89ODDf9G06a/atzlfUKB9iYnKveh9tekzZ8nD01OPPfKgcnNz1eXOrnpv3kJ5eHjY11mweInGjn5avXpeOGvz7nt6a9Ybjvcg/Hjph7qrWxQfuSpjbr95a2lw89ZrF317M0195n8Vfv8/L3kSyfXiVdFTu76cogGTFmrzH17axNVx89Zr8+03KzRp4jjFxe9ShQrue4ErLy9PLUIaa9EHH6rDbbe5bY4blTM3b+XIrpz6bsMeNQryV11/q46dOO22OerXqalX5n1H6HBdde/RUwf271dycrJb756SdOSIJv7tWUJ3HXBkB9zAOLJDeebMkR0nqAAAjEfsAADGI3YAAOMROwCA8YgdAMB4xA4AYDxiBwAwHrEDABiP2AEAjEfsAADGI3YAAOMROwCA8YgdAMB4xA4AYDxiBwAwHrEDABiP2AEAjEfsAADGI3YAAOMROwCA8YgdAMB4xA4AYDxiBwAwHrEDABiP2AEAjEfsAADGI3YAAOMROwCA8YgdAMB4xA4AYDxiBwAwHrEDABiP2AEAjEfsAADGI3YAAOMROwCA8YgdAMB4xA4AYDxiBwAwHrEDABiP2AEAjEfsAADGI3YAAOMROwCA8YgdAMB4xA4AYDxiBwAwHrEDABiP2AEAjOdZkpWWLVtW4h327t37mocBAKAslCh2ffr0KdHOLBaLCgsLSzMPAAAuV6LYFRUVlfUcAACUmVK9Z3fu3DlXzQEAQJlxOnaFhYV68cUXVbduXVWtWlUHDx6UJE2ePFnz5s1z+YAAAJSW07F7+eWXtXDhQk2fPl1eXl725aGhoZo7d65LhwMAwBWcjt3ixYv13nvv6dFHH5WHh4d9ecuWLbV3716XDgcAgCs4Hbvk5GQ1atSo2PKioiIVFBS4ZCgAAFzJ6dg1b95c69evL7b8k08+UVhYmEuGAgDAlUr00YOLPf/88+rXr5+Sk5NVVFSkzz77TImJiVq8eLGWL19eFjMCAFAqTh/Z9erVS0uXLtWKFStksVg0ZcoUJSQk6KuvvlK3bt3KYkYAAErF6SM7SYqOjlZ0dLSrZwEAoExcU+wkacuWLUpISJDFYlFISIjCw8NdORcAAC7jdOyOHTumRx55RBs3blT16tUlSadPn1aHDh304YcfKigoyNUzAgBQKk6/Zzd48GAVFBQoISFBGRkZysjIUEJCgmw2m4YMGVIWMwIAUCpOH9mtX79emzZtUtOmTe3LmjZtqjfffFO33XabS4cDAMAVnD6yq1+//iU/PH7+/HnVrVvXJUMBAOBKTsdu+vTpGjlypLZs2SKbzSbpwskqo0aN0quvvuryAQEAKK0SvYxZo0YNWSwW++OzZ88qIiJCnp4XNj9//rw8PT01ePDgEt/oFQCA66VEsZs9e3YZjwEAQNkpUewGDBhQ1nMAAFBmrvlD5ZKUm5tb7GQVX1/fUg0EAICrOX2CytmzZzVixAj5+/uratWqqlGjhsMXAAB/Nk7HbsKECVq9erXmzJkjb29vzZ07V//4xz8UGBioxYsXl8WMAACUitMvY3711VdavHixOnfurMGDB6tjx45q1KiRGjRooCVLlujRRx8tizkBALhmTh/ZZWRkKDg4WNKF9+cyMjIkSbfffrvWrVvn2ukAAHABp2N388036/Dhw5KkZs2a6eOPP5Z04YjvtwtDAwDwZ+J07AYNGqTt27dLkiZNmmR/7+6ZZ57R+PHjXT4gAACl5fR7ds8884z9v7t06aK9e/dqy5YtuuWWW9SqVSuXDgcAgCuU6nN20oULQ9evX98VswAAUCZKFLs33nijxDt8+umnr3kYAADKQoliN2vWrBLtzGKxEDsAwJ9OiWJ36NChsp4DAIAy4/TZmAAA3GiIHQDAeMQOAGA8YgcAMB6xAwAY75pit379ej322GOKjIxUcnKyJOmDDz7Qhg0bXDocAACu4HTsPv30U0VHR8vHx0fbtm1TXl6eJOnMmTP65z//6fIBAQAoLadj99JLL+lf//qX3n//fVWsWNG+vEOHDtq6datLhwMAwBWcjl1iYqI6depUbLmvr69Onz7tipkAAHApp2NXp04dHThwoNjyDRs26Oabb3bJUAAAuJLTsXviiSc0atQoxcbGymKx6Pjx41qyZInGjRunp556qixmBACgVJy+xc+ECROUlZWlLl266Ny5c+rUqZO8vb01btw4jRgxoixmBACgVCw2m812LRv+8ssv2rNnj4qKitSsWTNVrVrV1bNdVXZ2tqxWq7xDh8ri4XXdfz7gbpk/v+XuEQC3yc7OVkAtq7KysuTr63vFda/55q2VK1dW27Ztr3VzAACuG6dj16VLF1kslst+f/Xq1aUaCAAAV3M6dq1bt3Z4XFBQoPj4eO3atUsDBgxw1VwAALiM07G73F3L//73vysnJ6fUAwEA4GouuxD0Y489pvnz57tqdwAAuIzLYrd582ZVqlTJVbsDAMBlnH4Z87777nN4bLPZlJKSoi1btmjy5MkuGwwAAFdxOnZWq9XhcYUKFdS0aVO98MILioqKctlgAAC4ilOxKyws1MCBAxUaGqqaNWuW1UwAALiUU+/ZeXh4KDo6WllZWWU1DwAALuf0CSqhoaE6ePBgWcwCAECZcDp2L7/8ssaNG6fly5crJSVF2dnZDl8AAPzZOH2CSvfu3SVJvXv3drhsmM1mk8ViUWFhoeumAwDABZyO3Zo1a8piDgAAyozTsQsODlZQUFCxi0HbbDYdPXrUZYMBAOAqTr9nFxwcrJMnTxZbnpGRoeDgYJcMBQCAKzkdu9/em/ujnJwcLhcGAPhTKvHLmGPGjJEkWSwWTZ48WZUrV7Z/r7CwULGxscVu/wMAwJ9BiWO3bds2SReO7Hbu3CkvLy/797y8vNSqVSuNGzfO9RMCAFBKJY7db2dhDho0SK+//rp8fX3LbCgAAFzJ6bMxFyxYUBZzAABQZlx2PzsAAP6siB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdriqcYOjtOHf45W24VUdWTVVH782VI0b+Bdbr2lwgD6Z/YRS181Q2oZX9eOisQqqXcMNEwNl79135ujWxsGqXrWSOrQL14YN6909Eq6A2OGqOrZppH8tXac7+r+qe/76ljw8PLT8nRGqXMnLvk5wPT+tmj9G+w6lKnro62r30FRNff9bncsrcOPkQNn45OOlGj92tCb+7VnF/LxNHW7vqD739FBSUpK7R8NlWGw2m83dQ1yr7OxsWa1WeYcOlcXD6+obwCX8alTV0dXTdNeQWdq49b+SpMXTBqmgoFBDJi9283TlS+bPb7l7hHKpY4cIhYW10Rtvv2Nf1jo0RL1699GLL09142TlS3Z2tgJqWZWVlSVfX98rrsuRHZzmW7WSJCkz6xdJksViUffbm2t/UpqWvT1cR1ZN1brF49Src0t3jgmUifz8fG3bGqeu3aIclne9K0oxmze5aSpcDbGD014Z21cbtx7Qnv+mSJL8a1ZVtSqVNG5QN63ctEe9/vqWlq3Zro9mPq7bwxu5eVrAtU6dOqXCwkL5+wc4LA8ICNCJE6lumgpX4+nuAXBjmfW3BxXaOFBdB82yL6tQ4cK/mZav3ak3l6yRJO3Yl6yIVjdr6P23a0PcAbfMCpQli8Xi8NhmsxVbhj8PjuxQYq9NfED33BGq6KFvKDnttH35qcwcFRQUKuFgisP6iQdTORsTxvHz85OHh0exo7i0tLRiR3v48yB2KJFZEx/QvXe2Uvcn3tCR4+kO3ys4X6i4PUfUpIHjH/TGDfyVlJJ5PccEypyXl5fC2oRr9Q8rHZavXrVS7SM7uGkqXA0vY+KqZk96UA/1aKsHnnlPOWfPKaBWNUlSVs45+0cLZi36QR+8Mlgbth7Qj1v2KapDM/Xs1ELRQ1935+hAmXh69BgNGdhPbcLbKqJ9pObNfU9Hk5L0+LAn3T0aLsOtHz1Yt26dZsyYobi4OKWkpOjzzz9Xnz59Srw9Hz24PnK3Xfr09qFTPtC/v4q1P+5/b3uNHxyluv7Vte9Iml7619davnbn9RqzXOKjB+7z7jtz9NrM6UpNSVHz5i00feYs3d6xk7vHKlec+eiBW2P3zTffaOPGjWrTpo369u1L7AAnETuUZ87Ezq0vY/bo0UM9evRw5wgAgHLghnrPLi8vT3l5efbH2dnZbpwGAHCjuKHOxpw6daqsVqv9KygoyN0jAQBuADdU7CZNmqSsrCz719GjR909EgDgBnBDxc7b21u+vr4OX7g2Na1VdGTVVNWvU9OtczRvFKgD377ocAcFoKylp6erfqC/jhw+7NY5du3cqVsa1tPZs2fdOkd5cEPFDq4zfnCUVqzbqaSUDEnSq+P7auOSCTodO0sxH/2tRPvwquip1yY+oKOrp+nUppn6ZPYTqutf3WGd6tV8NO/F/kpdN0Op62Zo3ov9Za3qY//+7gPHtWXXEY18rIvLnhtwNTNemaqed/dSg4YNJUlJSUnq26eXalmrqF5tP40Z/bTy8/OvuI+8vDw9M2qk6tX2Uy1rFd3/v7117Ngxh3UyMzM1eEA/BdSyKqCWVYMH9NPp06ft328RGqq2/9NOb74+Syhbbo1dTk6O4uPjFR8fL0k6dOiQ4uPjuSdUGavkXVED+kRq4eeb7cssFosWfxmj/3y/tcT7mTG+r3p3aan+kxao66BZqurjpU/feFIVKvx+fcCFUweqZdN6unfEHN07Yo5aNq2neS/1d9jP4mUxGvZAR4ftgLKSm5urRQvmaeDgxyVJhYWFuq/33Tp79qxWrd2gxUs+0heff6qJ48decT/jx4zWsi8/1+IlH2nV2g3KyclR33vvUWFhoX2dgf3+oh3b4/Xl8m/15fJvtWN7vIYM7Oewn/4DBum9d99x2A6u59bYbdmyRWFhYQoLC5MkjRkzRmFhYZoyZYo7xzJe9G3NdL6wULE7DtmXjZ3+H7378TodOpZ+hS1/51u1kgb2idTfXvtca2ITtT3xmAY/t1gtGgXqzohbJV24c3n0bc311AtLFLvjkGJ3HNLwF/9Pd98R6nCn85WbElTTWkUdwxu79okCl/Ddt9/I09NT7SMjJUk/rPxeCQl7NH/Rv9U6LEx3dr1L06bP1IJ571/2jO+srCwtXDBP06bP1J1d71LrsDDNX/Rv7dq1U6tX/SBJ2puQoO+/+1Zz3p2r9pGRah8Zqbf/9b5WfL1c+xIT7fvqFhWtjPR0rV/3Y9k/+XLMrbHr3LmzbDZbsa+FCxe6cyzj3d6mkbbuKd3Rc1hIfXlV9NQPmxPsy1JOZmn3f4+rfatgSVJEy2CdPvOLft51xL7OTzsP6/SZX9S+1c32ZQXnC7VzX7JuC7ulVDMBJbFh/Tq1CW9rfxwbs1nNm7dQYGCgfVm3qGjl5eVp29a4S+5j29Y4FRQU6K6L7mkXGBio5s1b2O9pFxuzWVarVe0iIuzrRLRvL6vV6nDfOy8vL4W2bKWNG9a77DmiON6zK4caBNZUysmsUu2jdi1f5eUX6PSZXIflaelnFFDrwolDAbV8dTIjp9i2JzNyFODneHLR8bTTahBYq1QzASVx5Mhh1anze9hOpKbKP8DxIuY1atSQl5eXUlMvfX+61NRUeXl5qUYNx7t6+AcE6MSv25w4kaqb/P2LbXuTv3+xOyYE1q3r9pNlTEfsyqFK3l46l3e+TPZtsVh08fXnLnU1OotF0h+W5+YVqHKlimUyE3Cxc7m5qlSpksOyS92H7lruT/fHbS63X/1huU8lH/2S+4tTPwvOIXblUPrpHNXwrVyqfaSmZ8vbq6KqV/NxWH5TzapKS7/wPseJ9Gz5/3qHhIv51aiqE+lnHJbVsFbWqcziR4GAq9Wq5afM07/feiqgdm370dhvMjMzVVBQoICAS9+frnbt2srPz1dmpuMtrE6mpdmPEgMCaivtxIli2546eVIBf7jvXWZmhvz8brqm54OSIXbl0Pa9x3TrzbVLtY9tCUnKLzivru1vtS+r7eer5rcEKmb7hRNfYnccUvVqldW2eQP7Ov/TooGqV6usmO0HHfbX/JZAxSc6nrYNlIVWYWHau2eP/XFE+0jt3r1LKSm/33z4h5Xfy9vbW2Ftwi+5j7A24apYsaJWXXRPu5SUFO3evct+T7uI9pHKysrSzz/9ZF/np9hYZWVlFbvv3e7du9S6dZhLnh8ujdiVQys3J6jZzXUcjspuDvJTyyZ1FeDnKx/vimrZpK5aNqmrip4ekqTAm6yK/+w5e7iyc85p4RebNW3MfercrolaNa2n+S8N0K4Dx7U6dq8kKfHQCX23cbfenvKI2oU2VLvQhnp78l/09Y87tf9Imv1n169TU4H+Vq35dTugLHXrFq09e3bbj8ru6halkJBmGjKwn+K3bdOa1as0aeI4DRoy1H7hiuTkZLVqcas9XFarVQMHDdHfJozVmtWrFL9tmwYPeEwtWoTqzq53SZJuDQlRVHR3DX9yqGJjYhQbE6PhTw5Vz7vvUZOmTe3zHDl8WMeTk9Xl1+1QNm6oC0HDNXYfOK6tCUnqG9VG8z7dKEl6Z8qj6tT291P/Y5dOkiQ17TlFSSkZ8vT0UNPg2vK56EonE179VIWFRfr3K0Pk411Ra35K1LBRH6io6Pf34wb9v0WaOeF+fTVnuCTp6x936plpnzjM82CPtvph817uao7rokVoqNqEt9Wnn3ysx4c9IQ8PD3227GuNHvmU7rzjNvn4+OjBh/+iadNftW9zvqBA+xITlXvR+2rTZ86Sh6enHnvkQeXm5qrLnV313ryF8vDwsK+zYPESjR39tHr1vHDW5t339NasNxxvy/Tx0g91V7coNWjQQCg7br2fXWlxP7trF317M0195n8Vfv8/L3kSyfXiVdFTu76cogGTFmrzH17axNVxP7tr8+03KzRp4jjFxe9ShQrue4ErLy9PLUIaa9EHH6rDbbe5bY4b1Q1zPzu4z3cb9qhRkL/q+lt17MRpt81Rv05NvTLvO0KH66p7j546sH+/kpOT3Xr3lKQjRzTxb88SuuuAIzvgBsaRHcozZ47sOEEFAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeJ7uHqA0bDbbhf8tzHfzJIB7ZGdnu3sEwG3O/Pr//99acCUWW0nW+pM6duyYgoKC3D0GAMCNjh49qnr16l1xnRs6dkVFRTp+/LiqVasmi8Xi7nHKnezsbAUFBeno0aPy9fV19zjAdcefAfey2Ww6c+aMAgMDVaHCld+Vu6FfxqxQocJVa46y5+vryx90lGv8GXAfq9VaovU4QQUAYDxiBwAwHrHDNfP29tbzzz8vb29vd48CuAV/Bm4cN/QJKgAAlARHdgAA4xE7AIDxiB0AwHjEDgBgPGKHazZnzhwFBwerUqVKCg8P1/r16909EnBdrFu3Tr169VJgYKAsFou++OILd4+EqyB2uCZLly7V6NGj9eyzz2rbtm3q2LGjevTooaSkJHePBpS5s2fPqlWrVnrrrbfcPQpKiI8e4JpERESoTZs2euedd+zLQkJC1KdPH02dOtWNkwHXl8Vi0eeff64+ffq4exRcAUd2cFp+fr7i4uIUFRXlsDwqKkqbNm1y01QAcHnEDk47deqUCgsLFRAQ4LA8ICBAqampbpoKAC6P2OGa/fG2SjabjVstAfhTInZwmp+fnzw8PIodxaWlpRU72gOAPwNiB6d5eXkpPDxcK1eudFi+cuVKdejQwU1TAcDl3dA3b4X7jBkzRv369VPbtm0VGRmp9957T0lJSXryySfdPRpQ5nJycnTgwAH740OHDik+Pl41a9ZU/fr13TgZLoePHuCazZkzR9OnT1dKSopatGihWbNmqVOnTu4eCyhza9euVZcuXYotHzBggBYuXHj9B8JVETsAgPF4zw4AYDxiBwAwHrEDABiP2AEAjEfsAADGI3YAAOMROwCA8YgdcB00bNhQs2fPtj92192t//73v6t169aX/f7atWtlsVh0+vTpEu+zc+fOGj16dKnmWrhwoapXr16qfQBXQuwAN0hJSVGPHj1KtO7VAgXg6rg2JlBC+fn58vLycsm+ateu7ZL9ACgZjuxQLnXu3FkjRozQiBEjVL16ddWqVUvPPfecLr56XsOGDfXSSy9p4MCBslqtGjp0qCRp06ZN6tSpk3x8fBQUFKSnn35aZ8+etW+XlpamXr16ycfHR8HBwVqyZEmxn//HlzGPHTumhx9+WDVr1lSVKlXUtm1bxcbGauHChfrHP/6h7du3y2KxyGKx2K+9mJWVpWHDhsnf31++vr668847tX37doefM23aNAUEBKhatWoaMmSIzp0759TvKT09XY888ojq1aunypUrKzQ0VB9++GGx9c6fP3/F32V+fr4mTJigunXrqkqVKoqIiNDatWudmgUoDWKHcmvRokXy9PRUbGys3njjDc2aNUtz5851WGfGjBlq0aKF4uLiNHnyZO3cuVPR0dG67777tGPHDi1dulQbNmzQiBEj7NsMHDhQhw8f1urVq/Wf//xHc+bMUVpa2mXnyMnJ0R133KHjx49r2bJl2r59uyZMmKCioiI99NBDGjt2rJo3b66UlBSlpKTooYceks1m0913363U1FStWLFCcXFxatOmjbp27aqMjAxJ0scff6znn39eL7/8srZs2aI6depozpw5Tv2Ozp07p/DwcC1fvly7du3SsGHD1K9fP8XGxjr1uxw0aJA2btyojz76SDt27NADDzyg7t27a//+/U7NA1wzG1AO3XHHHbaQkBBbUVGRfdnEiRNtISEh9scNGjSw9enTx2G7fv362YYNG+awbP369bYKFSrYcnNzbYmJiTZJtpiYGPv3ExISbJJss2bNsi+TZPv8889tNpvN9u6779qqVatmS09Pv+Sszz//vK1Vq1YOy1atWmXz9fW1nTt3zmH5LbfcYnv33XdtNpvNFhkZaXvyyScdvh8REVFsXxdbs2aNTZItMzPzsuv07NnTNnbsWPvjq/0uDxw4YLNYLLbk5GSH/XTt2tU2adIkm81msy1YsMBmtVov+zOB0uI9O5Rb7du3l8VisT+OjIzUzJkzVVhYKA8PD0lS27ZtHbaJi4vTgQMHHF6atNlsKioq0qFDh7Rv3z55eno6bHfrrbde8UzD+Ph4hYWFqWbNmiWePS4uTjk5OapVq5bD8tzcXP33v/+VJCUkJBS7v2BkZKTWrFlT4p9TWFioadOmaenSpUpOTlZeXp7y8vJUpUoVh/Wu9LvcunWrbDabmjRp4rBNXl5esfmBskLsgCv441/qRUVFeuKJJ/T0008XW7d+/fpKTEyUJIe/+K/Gx8fH6bmKiopUp06dS77v5cpT+GfOnKlZs2Zp9uzZCg0NVZUqVTR69Gjl5+c7NauHh4fi4uLs/4j4TdWqVV02K3AlxA7lVkxMTLHHjRs3LvYX8sXatGmj3bt3q1GjRpf8fkhIiM6fP68tW7aoXbt2kqTExMQrfm6tZcuWmjt3rjIyMi55dOfl5aXCwsJic6SmpsrT01MNGza87CwxMTHq37+/w3N0xvr163Xvvffqsccek3QhXPv371dISIjDelf6XYaFhamwsFBpaWnq2LGjUz8fcBVOUEG5dfToUY0ZM0aJiYn68MMP9eabb2rUqFFX3GbixInavHmzhg8frvj4eO3fv1/Lli3TyJEjJUlNmzZV9+7dNXToUMXGxiouLk6PP/74FY/eHnnkEdWuXVt9+vTRxo0bdfDgQX366afavHmzpAtnhR46dEjx8fE6deqU8vLydNdddykyMlJ9+vTRd999p8OHD2vTpk167rnntGXLFknSqFGjNH/+fM2fP1/79u3T888/r927dzv1O2rUqJFWrlypTZs2KSEhQU888YRSU1Od+l02adJEjz76qPr376/PPvtMhw4d0s8//6xXXnlFK1ascGoe4FoRO5Rb/fv3V25urtq1a6fhw4dr5MiRGjZs2BW3admypX788Uft379fHTt2VFhYmCZPnqw6derY11mwYIGCgoJ0xx136L777rN/POByvLy89P3338vf3189e/ZUaGiopk2bZj/C7Nu3r7p3764uXbropptu0ocffiiLxaIVK1aoU6dOGjx4sJo0aaKHH35Yhw8fVkBAgCTpoYce0pQpUzRx4kSFh4fryJEj+utf/+rU72jy5Mlq06aNoqOj1blzZ3uUnf1dLliwQP3799fYsWPVtGlT9e7dW7GxsQoKCnJqHuBaWWy2iz4MA5QTnTt3VuvWrR0u4QXAXBzZAQCMR+wAAMbjZUwAgPE4sgMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGO//A4g1l8n1RZM6AAAAAElFTkSuQmCC",
1443
  "text/plain": [
1444
+ "<Figure size 500x500 with 1 Axes>"
1445
  ]
1446
  },
1447
  "metadata": {},
 
1474
  "\n",
1475
  "#change the size of the graph\n",
1476
  "\n",
1477
+ "plt.rcParams['figure.figsize'] = [5, 5]\n",
1478
  "\n",
1479
  "fig, ax = plot_confusion_matrix(\n",
1480
  " conf_mat=conf_matrix,\n",
 
1484
  ]
1485
  },
1486
  {
1487
+ "cell_type": "code",
1488
+ "execution_count": 155,
1489
+ "metadata": {
1490
+ "slideshow": {
1491
+ "slide_type": "slide"
1492
+ }
1493
+ },
1494
+ "outputs": [
1495
+ {
1496
+ "name": "stdout",
1497
+ "output_type": "stream",
1498
+ "text": [
1499
+ "Have the duplicates been removed? yes\n",
1500
+ "What is the missing values threshold? 80\n",
1501
+ "What is the variance threshold? 0.0\n",
1502
+ "How many features have been removed? 145\n",
1503
+ "---------------------\n",
1504
+ "What is the outlier removal threshold? none\n",
1505
+ "How many outliers have been removed? 0\n",
1506
+ "---------------------\n",
1507
+ "What is the scaling method? none\n",
1508
+ "---------------------\n",
1509
+ "What is the imputation method? mean\n",
1510
+ "---------------------\n",
1511
+ "What is the feature selection method? none\n",
1512
+ "What is the number of features selected? 445\n",
1513
+ "---------------------\n",
1514
+ "What is the imbalance treatment method? none\n",
1515
+ "---------------------\n",
1516
+ "What is the model? random_forest\n"
1517
+ ]
1518
+ }
1519
+ ],
1520
  "source": [
1521
+ "print('Have the duplicates been removed?', drop_duplicates_var)\n",
1522
+ "print('What is the missing values threshold?', missing_values_threshold_var)\n",
1523
+ "print('What is the variance threshold?', variance_threshold_var)\n",
1524
+ "print('How many features have been removed?', len(dropped))\n",
1525
+ "print('---------------------')\n",
1526
+ "print('What is the outlier removal threshold?', outlier_var)\n",
1527
+ "print('How many outliers have been removed?', len(X_train2) - len(X_train_dropped_outliers))\n",
1528
+ "print('---------------------')\n",
1529
+ "print('What is the scaling method?', scale_model_var)\n",
1530
+ "print('---------------------')\n",
1531
+ "print('What is the imputation method?', imputation_var)\n",
1532
+ "print('---------------------')\n",
1533
+ "print('What is the feature selection method?', feature_selection_var)\n",
1534
+ "print('What is the number of features selected?', len(selected_features))\n",
1535
+ "print('---------------------')\n",
1536
+ "print('What is the imbalance treatment method?', imbalance_var)\n",
1537
+ "print('---------------------')\n",
1538
+ "print('What is the model?', input_model)"
1539
  ]
1540
  }
1541
  ],