Upload P2 - Secom Notebook - Mercury.ipynb
Browse files- P2 - Secom Notebook - Mercury.ipynb +101 -74
P2 - Secom Notebook - Mercury.ipynb
CHANGED
@@ -26,7 +26,7 @@
|
|
26 |
},
|
27 |
{
|
28 |
"cell_type": "code",
|
29 |
-
"execution_count":
|
30 |
"metadata": {
|
31 |
"slideshow": {
|
32 |
"slide_type": "skip"
|
@@ -53,7 +53,7 @@
|
|
53 |
},
|
54 |
{
|
55 |
"cell_type": "code",
|
56 |
-
"execution_count":
|
57 |
"metadata": {
|
58 |
"slideshow": {
|
59 |
"slide_type": "skip"
|
@@ -64,7 +64,7 @@
|
|
64 |
"data": {
|
65 |
"application/mercury+json": {
|
66 |
"allow_download": true,
|
67 |
-
"code_uid": "App.0.40.24.1-
|
68 |
"continuous_update": false,
|
69 |
"description": "Recumpute everything dynamically",
|
70 |
"full_screen": true,
|
@@ -96,7 +96,7 @@
|
|
96 |
},
|
97 |
{
|
98 |
"cell_type": "code",
|
99 |
-
"execution_count":
|
100 |
"metadata": {
|
101 |
"slideshow": {
|
102 |
"slide_type": "skip"
|
@@ -138,7 +138,7 @@
|
|
138 |
},
|
139 |
{
|
140 |
"cell_type": "code",
|
141 |
-
"execution_count":
|
142 |
"metadata": {
|
143 |
"slideshow": {
|
144 |
"slide_type": "skip"
|
@@ -195,7 +195,7 @@
|
|
195 |
},
|
196 |
{
|
197 |
"cell_type": "code",
|
198 |
-
"execution_count":
|
199 |
"metadata": {
|
200 |
"slideshow": {
|
201 |
"slide_type": "skip"
|
@@ -290,7 +290,7 @@
|
|
290 |
},
|
291 |
{
|
292 |
"cell_type": "code",
|
293 |
-
"execution_count":
|
294 |
"metadata": {
|
295 |
"slideshow": {
|
296 |
"slide_type": "skip"
|
@@ -341,7 +341,7 @@
|
|
341 |
},
|
342 |
{
|
343 |
"cell_type": "code",
|
344 |
-
"execution_count":
|
345 |
"metadata": {
|
346 |
"slideshow": {
|
347 |
"slide_type": "skip"
|
@@ -419,7 +419,7 @@
|
|
419 |
},
|
420 |
{
|
421 |
"cell_type": "code",
|
422 |
-
"execution_count":
|
423 |
"metadata": {
|
424 |
"slideshow": {
|
425 |
"slide_type": "skip"
|
@@ -499,7 +499,7 @@
|
|
499 |
},
|
500 |
{
|
501 |
"cell_type": "code",
|
502 |
-
"execution_count":
|
503 |
"metadata": {
|
504 |
"slideshow": {
|
505 |
"slide_type": "skip"
|
@@ -585,7 +585,7 @@
|
|
585 |
},
|
586 |
{
|
587 |
"cell_type": "code",
|
588 |
-
"execution_count":
|
589 |
"metadata": {
|
590 |
"slideshow": {
|
591 |
"slide_type": "skip"
|
@@ -648,7 +648,7 @@
|
|
648 |
},
|
649 |
{
|
650 |
"cell_type": "code",
|
651 |
-
"execution_count":
|
652 |
"metadata": {
|
653 |
"slideshow": {
|
654 |
"slide_type": "skip"
|
@@ -737,7 +737,7 @@
|
|
737 |
},
|
738 |
{
|
739 |
"cell_type": "code",
|
740 |
-
"execution_count":
|
741 |
"metadata": {
|
742 |
"slideshow": {
|
743 |
"slide_type": "skip"
|
@@ -750,13 +750,6 @@
|
|
750 |
"from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score\n",
|
751 |
"\n",
|
752 |
"def evaluate_models(model='random_forest'):\n",
|
753 |
-
" print('Have the duplicates been removed?', drop_duplicates_var)\n",
|
754 |
-
" print('Missing values threshold is:', missing_values_threshold_var,' - Variance threshold is:,', variance_threshold_var,' - Correlation threshold is:', correlation_threshold_var)\n",
|
755 |
-
" print('Outlier removal threshold is:', outlier_var)\n",
|
756 |
-
" print('Scaling method is:', scale_model_var)\n",
|
757 |
-
" print('Imputation method is:', imputation_var)\n",
|
758 |
-
" print('Feature selection method is:', feature_selection_var)\n",
|
759 |
-
" print('Imbalance treatment method is:', imbalance_var)\n",
|
760 |
"\n",
|
761 |
" all_models = ['random_forest', 'logistic_regression', 'knn', 'svm', 'naive_bayes', 'decision_tree', 'xgboost']\n",
|
762 |
" evaluation_score_append = []\n",
|
@@ -825,7 +818,7 @@
|
|
825 |
},
|
826 |
{
|
827 |
"cell_type": "code",
|
828 |
-
"execution_count":
|
829 |
"metadata": {
|
830 |
"slideshow": {
|
831 |
"slide_type": "skip"
|
@@ -839,17 +832,17 @@
|
|
839 |
"yes",
|
840 |
"no"
|
841 |
],
|
842 |
-
"code_uid": "Select.0.40.16.25-
|
843 |
"disabled": false,
|
844 |
"hidden": false,
|
845 |
"label": "Drop Duplicates",
|
846 |
-
"model_id": "
|
847 |
"url_key": "",
|
848 |
"value": "yes",
|
849 |
"widget": "Select"
|
850 |
},
|
851 |
"application/vnd.jupyter.widget-view+json": {
|
852 |
-
"model_id": "
|
853 |
"version_major": 2,
|
854 |
"version_minor": 0
|
855 |
},
|
@@ -863,18 +856,18 @@
|
|
863 |
{
|
864 |
"data": {
|
865 |
"application/mercury+json": {
|
866 |
-
"code_uid": "Text.0.40.15.28-
|
867 |
"disabled": false,
|
868 |
"hidden": false,
|
869 |
"label": "Missing Value Threeshold",
|
870 |
-
"model_id": "
|
871 |
"rows": 1,
|
872 |
"url_key": "",
|
873 |
"value": "80",
|
874 |
"widget": "Text"
|
875 |
},
|
876 |
"application/vnd.jupyter.widget-view+json": {
|
877 |
-
"model_id": "
|
878 |
"version_major": 2,
|
879 |
"version_minor": 0
|
880 |
},
|
@@ -888,18 +881,18 @@
|
|
888 |
{
|
889 |
"data": {
|
890 |
"application/mercury+json": {
|
891 |
-
"code_uid": "Text.0.40.15.31-
|
892 |
"disabled": false,
|
893 |
"hidden": false,
|
894 |
"label": "Variance Threshold",
|
895 |
-
"model_id": "
|
896 |
"rows": 1,
|
897 |
"url_key": "",
|
898 |
"value": "0",
|
899 |
"widget": "Text"
|
900 |
},
|
901 |
"application/vnd.jupyter.widget-view+json": {
|
902 |
-
"model_id": "
|
903 |
"version_major": 2,
|
904 |
"version_minor": 0
|
905 |
},
|
@@ -913,18 +906,18 @@
|
|
913 |
{
|
914 |
"data": {
|
915 |
"application/mercury+json": {
|
916 |
-
"code_uid": "Text.0.40.15.34-
|
917 |
"disabled": false,
|
918 |
"hidden": false,
|
919 |
"label": "Correlation Threshold",
|
920 |
-
"model_id": "
|
921 |
"rows": 1,
|
922 |
"url_key": "",
|
923 |
"value": "1",
|
924 |
"widget": "Text"
|
925 |
},
|
926 |
"application/vnd.jupyter.widget-view+json": {
|
927 |
-
"model_id": "
|
928 |
"version_major": 2,
|
929 |
"version_minor": 0
|
930 |
},
|
@@ -944,17 +937,17 @@
|
|
944 |
4,
|
945 |
5
|
946 |
],
|
947 |
-
"code_uid": "Select.0.40.16.38-
|
948 |
"disabled": false,
|
949 |
"hidden": false,
|
950 |
"label": "Outlier Removal Threshold",
|
951 |
-
"model_id": "
|
952 |
"url_key": "",
|
953 |
"value": "none",
|
954 |
"widget": "Select"
|
955 |
},
|
956 |
"application/vnd.jupyter.widget-view+json": {
|
957 |
-
"model_id": "
|
958 |
"version_major": 2,
|
959 |
"version_minor": 0
|
960 |
},
|
@@ -975,17 +968,17 @@
|
|
975 |
"minmax",
|
976 |
"robust"
|
977 |
],
|
978 |
-
"code_uid": "Select.0.40.16.46-
|
979 |
"disabled": false,
|
980 |
"hidden": false,
|
981 |
"label": "Scaling Variables",
|
982 |
-
"model_id": "
|
983 |
"url_key": "",
|
984 |
"value": "none",
|
985 |
"widget": "Select"
|
986 |
},
|
987 |
"application/vnd.jupyter.widget-view+json": {
|
988 |
-
"model_id": "
|
989 |
"version_major": 2,
|
990 |
"version_minor": 0
|
991 |
},
|
@@ -1005,17 +998,17 @@
|
|
1005 |
"knn",
|
1006 |
"most_frequent"
|
1007 |
],
|
1008 |
-
"code_uid": "Select.0.40.16.50-
|
1009 |
"disabled": false,
|
1010 |
"hidden": false,
|
1011 |
"label": "Imputation Methods",
|
1012 |
-
"model_id": "
|
1013 |
"url_key": "",
|
1014 |
"value": "mean",
|
1015 |
"widget": "Select"
|
1016 |
},
|
1017 |
"application/vnd.jupyter.widget-view+json": {
|
1018 |
-
"model_id": "
|
1019 |
"version_major": 2,
|
1020 |
"version_minor": 0
|
1021 |
},
|
@@ -1036,17 +1029,17 @@
|
|
1036 |
"pca",
|
1037 |
"boruta"
|
1038 |
],
|
1039 |
-
"code_uid": "Select.0.40.16.55-
|
1040 |
"disabled": false,
|
1041 |
"hidden": false,
|
1042 |
"label": "Feature Selection",
|
1043 |
-
"model_id": "
|
1044 |
"url_key": "",
|
1045 |
"value": "none",
|
1046 |
"widget": "Select"
|
1047 |
},
|
1048 |
"application/vnd.jupyter.widget-view+json": {
|
1049 |
-
"model_id": "
|
1050 |
"version_major": 2,
|
1051 |
"version_minor": 0
|
1052 |
},
|
@@ -1066,17 +1059,17 @@
|
|
1066 |
"undersampling",
|
1067 |
"rose"
|
1068 |
],
|
1069 |
-
"code_uid": "Select.0.40.16.59-
|
1070 |
"disabled": false,
|
1071 |
"hidden": false,
|
1072 |
"label": "Imbalance Treatment",
|
1073 |
-
"model_id": "
|
1074 |
"url_key": "",
|
1075 |
"value": "none",
|
1076 |
"widget": "Select"
|
1077 |
},
|
1078 |
"application/vnd.jupyter.widget-view+json": {
|
1079 |
-
"model_id": "
|
1080 |
"version_major": 2,
|
1081 |
"version_minor": 0
|
1082 |
},
|
@@ -1099,17 +1092,17 @@
|
|
1099 |
"decision_tree",
|
1100 |
"xgboost"
|
1101 |
],
|
1102 |
-
"code_uid": "Select.0.40.16.64-
|
1103 |
"disabled": false,
|
1104 |
"hidden": false,
|
1105 |
"label": "Model Selection",
|
1106 |
-
"model_id": "
|
1107 |
"url_key": "",
|
1108 |
"value": "random_forest",
|
1109 |
"widget": "Select"
|
1110 |
},
|
1111 |
"application/vnd.jupyter.widget-view+json": {
|
1112 |
-
"model_id": "
|
1113 |
"version_major": 2,
|
1114 |
"version_minor": 0
|
1115 |
},
|
@@ -1217,7 +1210,7 @@
|
|
1217 |
},
|
1218 |
{
|
1219 |
"cell_type": "code",
|
1220 |
-
"execution_count":
|
1221 |
"metadata": {
|
1222 |
"slideshow": {
|
1223 |
"slide_type": "skip"
|
@@ -1298,7 +1291,7 @@
|
|
1298 |
},
|
1299 |
{
|
1300 |
"cell_type": "code",
|
1301 |
-
"execution_count":
|
1302 |
"metadata": {
|
1303 |
"slideshow": {
|
1304 |
"slide_type": "skip"
|
@@ -1336,26 +1329,13 @@
|
|
1336 |
},
|
1337 |
{
|
1338 |
"cell_type": "code",
|
1339 |
-
"execution_count":
|
1340 |
"metadata": {
|
1341 |
"slideshow": {
|
1342 |
"slide_type": "slide"
|
1343 |
}
|
1344 |
},
|
1345 |
"outputs": [
|
1346 |
-
{
|
1347 |
-
"name": "stdout",
|
1348 |
-
"output_type": "stream",
|
1349 |
-
"text": [
|
1350 |
-
"Have the duplicates been removed? yes\n",
|
1351 |
-
"Missing values threshold is: 80 - Variance threshold is:, 0.0 - Correlation threshold is: 1.0\n",
|
1352 |
-
"Outlier removal threshold is: none\n",
|
1353 |
-
"Scaling method is: none\n",
|
1354 |
-
"Imputation method is: mean\n",
|
1355 |
-
"Feature selection method is: none\n",
|
1356 |
-
"Imbalance treatment method is: none\n"
|
1357 |
-
]
|
1358 |
-
},
|
1359 |
{
|
1360 |
"data": {
|
1361 |
"text/html": [
|
@@ -1459,9 +1439,9 @@
|
|
1459 |
},
|
1460 |
{
|
1461 |
"data": {
|
1462 |
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAUcAAAFMCAYAAABYjn6oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAr6ElEQVR4nO3deVxU5f4H8M8IDKDAiBAgCogbIpsIV8R9BZdUyszMfffmvucvl1tm7mFqmOWClLfUzDLzZu6KLCWCK6KmLMIgyirG5nB+f5ijI0djZDkz+Hm/XrzunWfOefjOvPDTM+d55jkyQRAEEBGRhlpSF0BEpIsYjkREIhiOREQiGI5ERCIYjkREIhiOREQiGI5ERCIMpS6gIkpLS5GWlgZzc3PIZDKpyyEiPSAIAu7fvw97e3vUqvX88aFeh2NaWhocHBykLoOI9FBKSgoaNmz43Of1OhzNzc0BAPKWIyEzkEtcDema5BNrpC6BdND9vDw0dXZQ58fz6HU4Pv4oLTOQMxypDAsLC6lLIB32T5fiOCFDRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguGow8YP6oDfdy3AndOrcef0apzYMRsB7VtqHOPibIs96yYi/dRqZISvwckds+FgZ6lxjJ+nM/63eSruRayF8tQqHPpqOkyMjarzpZCENm8KQYtmzqhrZoJ2bXwQHn5a6pL0gqHUBdDzpd7JwaINP+HP5HsAgGH9/LAneALavrMC8TfT4dzQGke3zcKOHyPw8aZfkJtfgBbOdigsKlH34efpjJ82voc123/DrJV7UPxQBc/mDVBaKkj1sqga7dm9C3Nnz8BnG0Lg3649tny1GUGv98a5C1fg6OgodXk6TSYIgt7+K8nLy4NCoYCxx3jIDORSl1MtUk+sxP+t+xE7foxE2IrRKClRYeyisOcef3LHbByNvoqPQn6pxip1Q/YfG6UuQXId2/nB27s11n++Sd3WysMV/foHYemy5RJWJp28vDzYWimQm5sLCwuL5x7Hj9V6olYtGQYF+qCOqRzRF25BJpOhVwc3XE/OwP7PJyPp6HKcCpuDfl081ee8ZmmGNp7OuJuVj+Ohs5B45BP8tmU62rVqLOEroepSXFyM2HMx6N4zQKO9e48AREVGSFSV/mA46ji3pva4e2YtcqPXYf0HgzF49le4ejMdNvXMYF7HBHNG98ThiCvo9++N2H/8PL5bOw4dfJoCAJwbWgMAPpjYB9t+iMCAySGIi0/Bwc1T0cTxNSlfFlWDe/fuQaVSwcbGVqPd1tYWd+6kS1SV/uA1Rx13LfEO/N5ZjrrmtRHUvRW++mg4AsZ9htz7BQCAAycuYsPO4wCAC9dS4efVGOPf6oDwmBuoVUsGANi6Nxxf748CAJxPuI0ubVwwcoA/Fm/YL82Lomolk8k0HguCUKaNyuLIUceVPFThZso9nLuSjMUb9uPitVRMHtIF97LzUVKiQvxNpcbxCTfT1bPVyrt5AID4m5qjhIRb6WVmtKnmsba2hoGBQZlRYkZGRpnRJJXFcNQzMshgLDdEyUMVYq4kobmT5h95MycbJCuzAQBJaZlIy8hB80Y2Gsc0dbJBsjKr2momacjlcni39sGxI4c12o8dPYy2/u0kqkp/8GO1DvtwSj/8duYKUtKzYV7HBIMCfdDJtxn6Tw4BAATvOIKvV45B+LkbOHn2GgLatUSfTu4IHP+Zuo/gHUewcFJfXLyWivMJtzGsnx9cGtni3blbpXpZVI2mzZiFsaOGo7WPL/za+mPrli+RkpyMcRMmSV2azmM46jAbK3Ns/XgE7KwtkJtfiEvXU9F/cgiORV8FAOw/fgFTl32HuWMCsHbeW7iWlIEhc7cgIu6muo+N/z0BE2MjrJo9EJaK2rh4LRWv/3sjbt2+J9XLomo06O3ByMrMxCfLPkK6Ugk3N3f8+PNBODk5SV2azpN8nWNISAhWr14NpVIJNzc3rFu3Dh07dizXua/iOkcqP65zJDF6sc5x165dmDFjBj744APExsaiY8eO6N27N5KTk6Usi4hI2nD89NNPMXbsWIwbNw6urq5Yt24dHBwcsGnTpn8+mYioCkkWjsXFxYiJiUFAgObq/YCAAEREiK/eLyoqQl5ensYPEVFVkCwcH6/et7Utu3o/PV189f7y5cuhUCjUPw4ODtVRKhG9giRf56jN6v0FCxYgNzdX/ZOSklIdJRLRK0iycHy8ev/ZUWJGRkaZ0eRjxsbGsLCw0PipCeop6iDp6HI41q8naR1uTe1x49elqG3CmX9dkZmZCUd7GyQlJkpax6WLF9GkUUM8ePBA0jqqk2ThKJfL4ePjg8OHNVfvHz58GO3avVqr9+eOCcDBUxfV31pZM3cgzuych5zoYER99365+pAbGeLT+YOQcmwF7kWsxZ51E9HApq7GMXXNTbF16Qikn1qN9FOrsXXpCCjMTNXPX76RhrOXkjB1WNdKe21UMatXLkefvv3g1KgRACA5ORkDg/rBSlEHDe2sMWvGNBQXF7+wj6KiIsycPhUN7axhpaiDt97oj9u3b2sck52djTEjh8PWSgFbKwXGjByOnJwc9fPuHh7w/VcbbPgsuLJfos6S9GP1rFmzsGXLFmzbtg3x8fGYOXMmkpOTMWnSq7N638TYCCOD/BG6L1LdJpPJEPZTFL7/7Vy5+1k9dyD6d/XEiAXb0X10MMxM5di7fpJ68wkACF0+Cp4uDTFgSggGTAmBp0tDbP14hEY/YfujMGFQR43zSBoFBQXYsX0rRo0ZBwBQqVR4s39fPHjwAEdPhCNs53f4cd9ezJ87+4X9zJ01A/t/2oewnd/h6Ilw5OfnY+CA16FSqdTHjBr+Li6cj8NPB37FTwd+xYXzcRg7arhGPyNGjsaXmzdpnFeTSfoNmcGDByMzMxMfffQRlEol3N3dcfDgq7V6P7B9SzxUqRB94Za6bfaq7wEA1pZ94N6swT/2YWFmglFB/hi7MAzHoxMAAGMWhuH6/5aim18LHImMh4uzLQLbu6HT8NX441ISAGDy0v/iZNgcNHOywfWkDADA4Yh41FPUQUefZjj5x7XKfrmkhUO//g+GhoZo6+8PADhy+DfEx1/B9YMpsLe3BwCsWLUWE8aOwodLl4leZsrNzUXo9q3YGvo1unXvAQDYtuMbNHN2wLGjR9AzIBBX4+Px26FfcTI8Cm38/AAAn3/xFbp09Me1hAQ0d3EBAPQMCERWZiZOnzqJLl27VcdbICnJJ2Tee+89JCYmoqioCDExMejUqZPUJVWrDq2b4tyVii1693Z1hNzIEEci49Vtyru5uPxnGtp6OQN4dLuEnPt/qYMRAH6/mIic+3+hrdeTzW9LHqpw8Voq2ns3qVBNVHHhp0+htY+v+nF0VCTc3NzVwQg8CqyioiLEnosR7SP2XAxKSkrQ46kNb+3t7eHm5q7e8DY6KhIKhUIdjADg17YtFAqFxqa4crkcHp5eOPOK3ING8nB81TnZ14Pybm6F+rCzskBRcQly/t7j8bGMzPuwtXo0mrC1ssDdrPwy597NyoetteaIIy0jB072VhWqiSouKSkR9es/CcI76emweWay0tLSEnK5/LnL39LT0yGXy2FpqblFnY2tLe78fc6dO+l4zcamzLmv2diU2e7MvkEDySeHqgvDUWImxnIUFj2skr5lMhme/uK82NfoZTIAz7QXFJWgtgnvTii1woICmJiYaLSJLXN7mc1rnz3nef3imXZTE1P8VfCXVr9LXzEcJZaZkw9Li9oV6iM9Mw/GciPUNTfVaH+tnhkyMh99i+hOZh5srMzLnGttaYY7mfc12iwVtXEvu+wok6qXlZU1snOy1Y9t7ezUo73HsrOzUVJS8tzlb3Z2diguLkZ2drZG+92MDPUo1NbWDhl37pQ5997du7B9ZlPc7OwsWFu/GrfYYDhK7PzV22jR2K5CfcTGJ6O45CG6t22hbrOztoBbE3tEnX800RN94RbqmteGr9uTya5/uTuhrnltRJ2/qdGfWxN7xCVoLvWg6ufl7Y2rV66oH/u19cfly5egVD7Z/f3I4d9gbGwM79Y+on14t/aBkZERjj614a1SqcTly5fUG976tfVHbm4u/vj9d/Uxv0dHIzc3t8ymuJcvX0KrVt6V8vp0HcNRYocj49GycX2NUV9jB2t4Nm8AW2sLmBobwbN5A3g2bwAjQwMAgP1rCsT9sFAddHn5hQj9MRIrZr2JLm2aw8ulIbZ9PBKXbqSp935MuHUHh85cxueLh6CNRyO08WiEzxe9i19OXlTPVAOAY/16sLdR4Pjf55F0evYMxJUrl9Wjvh49A+Dq2hJjRw1HXGwsjh87igXz52D02PHqmerU1FR4ubdQB51CocCo0WPx/rzZOH7sKOJiYzFm5DC4u3uoZ69buLoiILAXJk8aj+ioKERHRWHypPHo0/d19Uw1ACQlJiItNRVd/z6vpuNmtxK7fCMN5+KTMTCgNbbuPQMA2LR4KDr5NlMfE71rAQDApc9iJCuzYGhoABdnO5g+9U2WeWv2QqUqxTcrx8LU2AjHf0/AhOlfo7T0yfXE0f+3A2vnvYWfQyYDAH45eREzV+zRqOft3r44EnlVfasFko67hwda+/hi757dGDdhIgwMDPDD/l8wY+p76Na5PUxNTfH2O+9ixao16nMelpTgWkICCp66LrhqbTAMDA0xbMjbKCgoQNdu3fHl1lAYGBioj9kethOzZ0xDvz6PZrX7vt4fwes198Pcvetb9OgZ8MostZN8s9uKqCmb3QZ2aInlM9+Az1ufiE6aVBe5kSEu/bQYIxeEIvKZj9r6qCZsdvvr/w5iwfw5iIm7hFq1pPugV1RUBHfXZtjx9bdo1769ZHVUhvJudsuRow44FH4FTR1s0MBGgdt3ciSrw7F+PazceqhGBGNN0at3H9y4fh2pqamS7kKVnJSE+e9/oPfBqA2OHKnGqgkjR6p8enGbBCIiXcVwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISUa67D+7fv7/cHfbv3/+liyEi0hXlCsegoKBydSaTyaBSqSpSDxGRTihXOJaWllZ1HUREOqVC1xwLCwsrqw4iIp2idTiqVCosXboUDRo0gJmZGW7evAkAWLRoEbZu3VrpBRIRSUHrcFy2bBlCQ0OxatUqyOVydbuHhwe2bNlSqcUREUlF63AMCwvDl19+iaFDh8LAwEDd7unpiatXr1ZqcUREUtE6HFNTU9G0adMy7aWlpSgpKamUooiIpKZ1OLq5ueH06dNl2vfs2QNvb+9KKYqISGrlWsrztCVLlmD48OFITU1FaWkpfvjhByQkJCAsLAwHDhyoihqJiKqd1iPHfv36YdeuXTh48CBkMhkWL16M+Ph4/Pzzz+jZs2dV1EhEVO20HjkCQGBgIAIDAyu7FiIinfFS4QgAZ8+eRXx8PGQyGVxdXeHj41OZdRERSUrrcLx9+zaGDBmCM2fOoG7dugCAnJwctGvXDt9++y0cHBwqu0Yiomqn9TXHMWPGoKSkBPHx8cjKykJWVhbi4+MhCALGjh1bFTUSEVU7rUeOp0+fRkREBFxcXNRtLi4u2LBhA9q3b1+pxRERSUXrkaOjo6PoYu+HDx+iQYMGlVIUEZHUtA7HVatWYerUqTh79iwEQQDwaHJm+vTpWLNmTaUXSEQkhXJ9rLa0tIRMJlM/fvDgAfz8/GBo+Oj0hw8fwtDQEGPGjCn3xrhERLqsXOG4bt26Ki6DiEi3lCscR44cWdV1EBHplJdeBA4ABQUFZSZnLCwsKlQQEZEu0HpC5sGDB5gyZQpsbGxgZmYGS0tLjR8ioppA63CcN28ejh07hpCQEBgbG2PLli348MMPYW9vj7CwsKqokYio2mn9sfrnn39GWFgYunTpgjFjxqBjx45o2rQpnJycsHPnTgwdOrQq6iQiqlZajxyzsrLg7OwM4NH1xaysLABAhw4dcOrUqcqtjohIIlqHY+PGjZGYmAgAaNmyJXbv3g3g0Yjy8UYURET6TutwHD16NM6fPw8AWLBggfra48yZMzF37txKL5CISApaX3OcOXOm+v937doVV69exdmzZ9GkSRN4eXlVanFERFKp0DpH4NFGFI6OjpVRCxGRzihXOK5fv77cHU6bNu2liyEi0hXlCsfg4OBydSaTyRiORFQjlCscb926VdV1EBHpFK1nq4mIXgUMRyIiEQxHIiIRDEciIhEMRyIiES8VjqdPn8awYcPg7++P1NRUAMDXX3+N8PDwSi2OiEgqWofj3r17ERgYCFNTU8TGxqKoqAgAcP/+fXzyySeVXiARkRS0DsePP/4YX3zxBb766isYGRmp29u1a4dz585VanFERFLROhwTEhLQqVOnMu0WFhbIycmpjJqIiCSndTjWr18fN27cKNMeHh6Oxo0bV0pRRERS0zocJ06ciOnTpyM6OhoymQxpaWnYuXMn5syZg/fee68qaiQiqnZab1k2b9485ObmomvXrigsLESnTp1gbGyMOXPmYMqUKVVRIxFRtZMJgiC8zIl//fUXrly5gtLSUrRs2RJmZmaVXds/ysvLg0KhgLHHeMgM5NX++0m3Zf+xUeoSSAfl5eXB1kqB3NxcWFhYPPe4l97stnbt2vD19X3Z04mIdJrW4di1a1fIZLLnPn/s2LEKFUREpAu0DsdWrVppPC4pKUFcXBwuXbqEkSNHVlZdRESS0jocn7cr+H/+8x/k5+dXuCAiIl1QaRtPDBs2DNu2baus7oiIJFVp4RgZGQkTE5PK6o6ISFJaf6x+8803NR4LggClUomzZ89i0aJFlVYYEZGUtA5HhUKh8bhWrVpwcXHBRx99hICAgEorjIhISlqFo0qlwqhRo+Dh4YF69epVVU1ERJLT6pqjgYEBAgMDkZubW1X1EBHpBK0nZDw8PHDz5s2qqIWISGdoHY7Lli3DnDlzcODAASiVSuTl5Wn8EBHVBFpPyPTq1QsA0L9/f42vEQqCAJlMBpVKVXnVERFJROtwPH78eFXUQUSkU7QOR2dnZzg4OJTZfEIQBKSkpFRaYUREUtL6mqOzszPu3r1bpj0rKwvOzs6VUhQRkdS0DsfH1xaflZ+fz68PElGNUe6P1bNmzQIAyGQyLFq0CLVr11Y/p1KpEB0dXWY7MyIifVXucIyNjQXwaOR48eJFyOVPbksgl8vh5eWFOXPmVH6FREQSKHc4Pp6lHj16ND777LMX3nuBiEjfaT1bvX379qqog4hIp1Tafo5ERDUJw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMNRz8wZE4Dwb+YiI3wNko4ux+5Px6OZk02Z41ycbbFn3USkn1qNjPA1OLljNhzsLCWomKS2eVMIWjRzRl0zE7Rr44Pw8NNSl6QXGI56pmPrpvhi1yl0HrEGr/97IwwMDHBg0xTUNnlyN0jnhtY4um0Wrt1KR+D4z9Bm8HIs/+pXFBaVSFg5SWHP7l2YO3sG5r//AaL+iEW7Dh0R9HpvJCcnS12azpMJgiBIXcTLysvLg0KhgLHHeMgM5P98Qg1kbWmGlGMr0GNsMM6c+xMAELZiNEpKVBi7KEzi6qSV/cdGqUuQXMd2fvD2bo31n29St7XycEW//kFYumy5hJVJJy8vD7ZWCuTm5r7wLqocOeo5CzMTAEB27l8AAJlMhl4d3HA9OQP7P5+MpKPLcSpsDvp18ZSyTJJAcXExYs/FoHvPAI327j0CEBUZIVFV+oPhqOdWzh6IM+du4MqfSgCATT0zmNcxwZzRPXE44gr6/Xsj9h8/j+/WjkMHn6YSV0vV6d69e1CpVLCxsdVot7W1xZ076RJVpT+0vm816Y7g99+GRzN7dB8drG6rVevRf+8OnLiIDTuPAwAuXEuFn1djjH+rA8JjbkhSK0lHJpNpPBYEoUwblcWRo576dP4gvN7ZA4Hj1yM1I0fdfi87HyUlKsTfVGocn3AznbPVrxhra2sYGBiUGSVmZGSUGU1SWQxHPRQ8fxAGdPNCr4nrkZSWqfFcyUMVYq4kobmT5h9/MycbJCuzq7NMkphcLod3ax8cO3JYo/3Y0cNo699Ooqr0Bz9W65l1C97G4N6+GDTzS+Q/KIStlTkAIDe/UL1UJ3jHEXy9cgzCz93AybPXENCuJfp0ckfg+M+kLJ0kMG3GLIwdNRytfXzh19YfW7d8iZTkZIybMEnq0nQel/LomYJY8eUp4xd/jW9+jlY/HjGgLeaOCUADm7q4lpSBj7/4BQdOXKyuMnUCl/I8snlTCD5duwrpSiXc3Nyxam0wOnTsJHVZkinvUh5Jw/HUqVNYvXo1YmJioFQqsW/fPgQFBZX7/FcxHKn8GI4kRi/WOT548ABeXl7YuJF/xESkWyS95ti7d2/07t273McXFRWhqKhI/TgvL68qyiIi0q/Z6uXLl0OhUKh/HBwcpC6JiGoovQrHBQsWIDc3V/2TkpIidUlEVEPp1VIeY2NjGBsbS10GEb0C9GrkWFPVU9RB0tHlcKxfT9I63Jra48avSzW2PyNpZWZmwtHeBkmJiZLWceniRTRp1BAPHjyQtI7qxHDUAXPHBODgqYtIVmYBANbMHYgzO+chJzoYUd+9X64+5EaG+HT+IKQcW4F7EWuxZ91ENLCpq3FMXXNTbF06AumnViP91GpsXToCCjNT9fOXb6Th7KUkTB3WtdJeG1XM6pXL0advPzg1agQASE5OxsCgfrBS1EFDO2vMmjENxcXFL+yjqKgIM6dPRUM7a1gp6uCtN/rj9u3bGsdkZ2djzMjhsLVSwNZKgTEjhyMnJ0f9vLuHB3z/1QYbPgvGq0LScMzPz0dcXBzi4uIAALdu3UJcXNwrtRGnibERRgb5I3RfpLpNJpMh7KcofP/buXL3s3ruQPTv6okRC7aj++hgmJnKsXf9JNSq9WSDgdDlo+Dp0hADpoRgwJQQeLo0xNaPR2j0E7Y/ChMGddQ4j6RRUFCAHdu3YtSYcQAAlUqFN/v3xYMHD3D0RDjCdn6HH/ftxfy5s1/Yz9xZM7D/p30I2/kdjp4IR35+PgYOeB0qlUp9zKjh7+LC+Tj8dOBX/HTgV1w4H4exo4Zr9DNi5Gh8uXmTxnk1maThePbsWXh7e8Pb2xsAMGvWLHh7e2Px4sVSllWtAtu3xEOVCtEXbqnbZq/6Hpt3n8Kt25kvOPMJCzMTjAryx/uf7sPx6AScT7iNMQvD4N7UHt38WgB4dNuEwPZueO+jnYi+cAvRF25h8tL/om9nD43bLByOiEc9RR109GlWuS+UtHbo1//B0NAQbf39AQBHDv+G+Pgr2LbjG7Ty9ka37j2wYtVabN/61XOXteXm5iJ0+1asWLUW3br3QCtvb2zb8Q0uXbqIY0ePAACuxsfjt0O/ImTzFrT190dbf398/sVXOPjLAVxLSFD31TMgEFmZmTh96mTVv3gdIGk4dunSBYIglPkJDQ2Vsqxq1aF1U5y7UrGRsrerI+RGhjgSGa9uU97NxeU/09DWyxkA4OfpjJz7f+GPS0nqY36/mIic+3+hrVdjdVvJQxUuXktFe+8mFaqJKi789Cm09vFVP46OioSbmzvs7e3VbT0DAlFUVITYczGifcSei0FJSQl6PLXhrb29Pdzc3NUb3kZHRUKhUKCNn5/6GL+2baFQKDQ2xZXL5fDw9MKZV+QeNLzmKDEn+3pQ3s2tUB92VhYoKi5Bzv0CjfaMzPuwtXr09ShbKwvczcovc+7drHzYWmt+hSotIwdO9lYVqokqLikpEfXrPwnCO+npsLHV3G3J0tIScrkc6enim9emp6dDLpfD0lJzuzobW1vc+fucO3fS8ZpN2Zu0vWZjU2a7M/sGDSSfHKouDEeJmRjLUVj0sEr6lslkePqL82Jfo5fJADzTXlBUgtomRlVSE5VfYUEBTExMNNrENql9mc1rnz3nef3imXZTE1P8VfCXVr9LXzEcJZaZkw9Li9oV6iM9Mw/GciPUNTfVaH+tnhkyMh9di7qTmQebv7c3e5q1pRnuZN7XaLNU1Ma97LKjTKpeVlbWyM55sgenrZ2derT3WHZ2NkpKSmBrK755rZ2dHYqLi5GdrbmX592MDPUo1NbWDhl37pQ5997du7B9ZlPc7OwsWFu/9lKvR98wHCV2/upttGhsV6E+YuOTUVzyEN3btlC32VlbwK2JPaLOP5roib5wC3XNa8PXzUl9zL/cnVDXvDaizt/U6M+tiT3iEjSXelD18/L2xtUrV9SP/dr64/LlS1Aqn+zyfuTwbzA2NoZ3ax/RPrxb+8DIyAhHn9rwVqlU4vLlS+oNb/3a+iM3Nxd//P67+pjfo6ORm5tbZlPcy5cvoVUr70p5fbqO4Sixw5HxaNm4vsaor7GDNTybN4CttQVMjY3g2bwBPJs3gJGhAQDA/jUF4n5YqA66vPxChP4YiRWz3kSXNs3h5dIQ2z4eiUs30nAs+ioAIOHWHRw6cxmfLx6CNh6N0MajET5f9C5+OXkR15My1L/bsX492NsocPzv80g6PXsG4sqVy+pRX4+eAXB1bYmxo4YjLjYWx48dxYL5czB67Hj11lupqanwcm+hDjqFQoFRo8fi/XmzcfzYUcTFxmLMyGFwd/dAt+49AAAtXF0RENgLkyeNR3RUFKKjojB50nj06fs6mru4qOtJSkxEWmoquv59Xk2nV18frIku30jDufhkDAxoja17zwAANi0eik6+T5bSRO9aAABw6bMYycosGBoawMXZDqZPfZNl3pq9UKlK8c3KsTA1NsLx3xMwYfrXKC19cj1x9P/twNp5b+HnkMkAgF9OXsTMFXs06nm7ty+ORF7lLRV0gLuHB1r7+GLvnt0YN2EiDAwM8MP+XzBj6nvo1rk9TE1N8fY772LFqjXqcx6WlOBaQgIKnrouuGptMAwMDTFsyNsoKChA127d8eXWUBgYGKiP2R62E7NnTEO/Po9mtfu+3h/B6zW3Ety961v06BkAJycnvAq4E7gOCOzQEstnvgGftz4RnTSpLnIjQ1z6aTFGLghF5DMftfVRTdjs9tf/HcSC+XMQE3dJfWdJKRQVFcHdtRl2fP0t2rVvL1kdlaG8m91y5KgDDoVfQVMHGzSwUeD2nRzJ6nCsXw8rtx6qEcFYU/Tq3Qc3rl9HamqqpFv0JSclYf77H+h9MGqDI0eqsWrCyJEqn17cJoGISFcxHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRBhKXUBFCILw6H9VxRJXQrooLy9P6hJIB93/++/icX48j0z4pyN02O3bt+Hg4CB1GUSkh1JSUtCwYcPnPq/X4VhaWoq0tDSYm5tDJpNJXY7k8vLy4ODggJSUFFhYWEhdDukI/l1oEgQB9+/fh729PWrVev6VRb3+WF2rVq0XJv+rysLCgv8IqAz+XTyhUCj+8RhOyBARiWA4EhGJYDjWIMbGxliyZAmMjY2lLoV0CP8uXo5eT8gQEVUVjhyJiEQwHImIRDAciYhEMByJiEQwHGuIkJAQODs7w8TEBD4+Pjh9+rTUJZHETp06hX79+sHe3h4ymQw//vij1CXpFYZjDbBr1y7MmDEDH3zwAWJjY9GxY0f07t0bycnJUpdGEnrw4AG8vLywceNGqUvRS1zKUwP4+fmhdevW2LRpk7rN1dUVQUFBWL58uYSVka6QyWTYt28fgoKCpC5Fb3DkqOeKi4sRExODgIAAjfaAgABERERIVBWR/mM46rl79+5BpVLB1tZWo93W1hbp6ekSVUWk/xiONcSzW7YJgsBt3IgqgOGo56ytrWFgYFBmlJiRkVFmNElE5cdw1HNyuRw+Pj44fPiwRvvhw4fRrl07iaoi0n96vdktPTJr1iwMHz4cvr6+8Pf3x5dffonk5GRMmjRJ6tJIQvn5+bhx44b68a1btxAXF4d69erB0dFRwsr0A5fy1BAhISFYtWoVlEol3N3dERwcjE6dOkldFknoxIkT6Nq1a5n2kSNHIjQ0tPoL0jMMRyIiEbzmSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UiSatSoEdatW6d+LNV2/v/5z3/QqlWr5z5/4sQJyGQy5OTklLvPLl26YMaMGRWqKzQ0FHXr1q1QH/RyGI6kU5RKJXr37l2uY/8p0IgqghtPUIUVFxdDLpdXSl92dnaV0g9RRXHkSBq6dOmCKVOmYMqUKahbty6srKywcOFCPP0V/EaNGuHjjz/GqFGjoFAoMH78eABAREQEOnXqBFNTUzg4OGDatGl48OCB+ryMjAz069cPpqamcHZ2xs6dO8v8/mc/Vt++fRvvvPMO6tWrhzp16sDX1xfR0dEIDQ3Fhx9+iPPnz0Mmk0Emk6k3U8jNzcWECRNgY2MDCwsLdOvWDefPn9f4PStWrICtrS3Mzc0xduxYFBYWavU+ZWZmYsiQIWjYsCFq164NDw8PfPvtt2WOe/jw4Qvfy+LiYsybNw8NGjRAnTp14OfnhxMnTmhVC1UNhiOVsWPHDhgaGiI6Ohrr169HcHAwtmzZonHM6tWr4e7ujpiYGCxatAgXL15EYGAg3nzzTVy4cAG7du1CeHg4pkyZoj5n1KhRSExMxLFjx/D9998jJCQEGRkZz60jPz8fnTt3RlpaGvbv34/z589j3rx5KC0txeDBgzF79my4ublBqVRCqVRi8ODBEAQBffv2RXp6Og4ePIiYmBi0bt0a3bt3R1ZWFgBg9+7dWLJkCZYtW4azZ8+ifv36CAkJ0eo9KiwshI+PDw4cOIBLly5hwoQJGD58OKKjo7V6L0ePHo0zZ87gu+++w4ULFzBo0CD06tUL169f16oeqgIC0VM6d+4suLq6CqWlpeq2+fPnC66ururHTk5OQlBQkMZ5w4cPFyZMmKDRdvr0aaFWrVpCQUGBkJCQIAAQoqKi1M/Hx8cLAITg4GB1GwBh3759giAIwubNmwVzc3MhMzNTtNYlS5YIXl5eGm1Hjx4VLCwshMLCQo32Jk2aCJs3bxYEQRD8/f2FSZMmaTzv5+dXpq+nHT9+XAAgZGdnP/eYPn36CLNnz1Y//qf38saNG4JMJhNSU1M1+unevbuwYMECQRAEYfv27YJCoXju76Sqw2uOVEbbtm017j/j7++PtWvXQqVSwcDAAADg6+urcU5MTAxu3Lih8VFZEASUlpbi1q1buHbtGgwNDTXOa9GixQtnYuPi4uDt7Y169eqVu/aYmBjk5+fDyspKo72goAB//vknACA+Pr7MRsD+/v44fvx4uX+PSqXCihUrsGvXLqSmpqKoqAhFRUWoU6eOxnEvei/PnTsHQRDQvHlzjXOKiorK1E/Vj+FIL+XZECgtLcXEiRMxbdq0Msc6OjoiISEBQNkbgb2Iqamp1nWVlpaifv36otftKnNJzNq1axEcHIx169bBw8MDderUwYwZM1BcXKxVrQYGBoiJiVH/R+cxMzOzSquVXg7DkcqIiooq87hZs2Zl/gE/rXXr1rh8+TKaNm0q+ryrqysePnyIs2fPok2bNgCAhISEF64b9PT0xJYtW5CVlSU6epTL5VCpVGXqSE9Ph6GhIRo1avTcWqKiojBixAiN16iN06dPY8CAARg2bBiAR0F3/fp1uLq6ahz3ovfS29sbKpUKGRkZ6Nixo1a/n6oeJ2SojJSUFMyaNQsJCQn49ttvsWHDBkyfPv2F58yfPx+RkZGYPHky4uLicP36dezfvx9Tp04FALi4uKBXr14YP348oqOjERMTg3Hjxr1wdDhkyBDY2dkhKCgIZ86cwc2bN7F3715ERkYCeDRr/vi+KPfu3UNRURF69OgBf39/BAUF4dChQ0hMTERERAQWLlyIs2fPAgCmT5+Obdu2Ydu2bbh27RqWLFmCy5cva/UeNW3aFIcPH0ZERATi4+MxceJE0fuEv+i9bN68OYYOHYoRI0bghx9+wK1bt/DHH39g5cqVOHjwoFb1UBWQ+qIn6ZbOnTsL7733njBp0iTBwsJCsLS0FN5//32NSQUnJyeNSZTHfv/9d6Fnz56CmZmZUKdOHcHT01NYtmyZ+nmlUin07dtXMDY2FhwdHYWwsLAyfeGpCRlBEITExERh4MCBgoWFhVC7dm3B19dXiI6OFgRBEAoLC4WBAwcKdevWFQAI27dvFwRBEPLy8oSpU6cK9vb2gpGRkeDg4CAMHTpUSE5OVve7bNkywdraWjAzMxNGjhwpzJs3T6sJmczMTGHAgAGCmZmZYGNjIyxcuFAYMWKEMGDAAK3ey+LiYmHx4sVCo0aNBCMjI8HOzk544403hAsXLgiCwAkZKfEeMqShS5cuaNWqlcZX+oheRfxYTUQkguFIRCSCH6uJiERw5EhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQk4v8B7YgKY252X9IAAAAASUVORK5CYII=",
|
1463 |
"text/plain": [
|
1464 |
-
"<Figure size
|
1465 |
]
|
1466 |
},
|
1467 |
"metadata": {},
|
@@ -1494,7 +1474,7 @@
|
|
1494 |
"\n",
|
1495 |
"#change the size of the graph\n",
|
1496 |
"\n",
|
1497 |
-
"plt.rcParams['figure.figsize'] = [
|
1498 |
"\n",
|
1499 |
"fig, ax = plot_confusion_matrix(\n",
|
1500 |
" conf_mat=conf_matrix,\n",
|
@@ -1504,11 +1484,58 @@
|
|
1504 |
]
|
1505 |
},
|
1506 |
{
|
1507 |
-
"
|
1508 |
-
"
|
1509 |
-
"metadata": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1510 |
"source": [
|
1511 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1512 |
]
|
1513 |
}
|
1514 |
],
|
|
|
26 |
},
|
27 |
{
|
28 |
"cell_type": "code",
|
29 |
+
"execution_count": 139,
|
30 |
"metadata": {
|
31 |
"slideshow": {
|
32 |
"slide_type": "skip"
|
|
|
53 |
},
|
54 |
{
|
55 |
"cell_type": "code",
|
56 |
+
"execution_count": 140,
|
57 |
"metadata": {
|
58 |
"slideshow": {
|
59 |
"slide_type": "skip"
|
|
|
64 |
"data": {
|
65 |
"application/mercury+json": {
|
66 |
"allow_download": true,
|
67 |
+
"code_uid": "App.0.40.24.1-rand99a3439b",
|
68 |
"continuous_update": false,
|
69 |
"description": "Recumpute everything dynamically",
|
70 |
"full_screen": true,
|
|
|
96 |
},
|
97 |
{
|
98 |
"cell_type": "code",
|
99 |
+
"execution_count": 141,
|
100 |
"metadata": {
|
101 |
"slideshow": {
|
102 |
"slide_type": "skip"
|
|
|
138 |
},
|
139 |
{
|
140 |
"cell_type": "code",
|
141 |
+
"execution_count": 142,
|
142 |
"metadata": {
|
143 |
"slideshow": {
|
144 |
"slide_type": "skip"
|
|
|
195 |
},
|
196 |
{
|
197 |
"cell_type": "code",
|
198 |
+
"execution_count": 143,
|
199 |
"metadata": {
|
200 |
"slideshow": {
|
201 |
"slide_type": "skip"
|
|
|
290 |
},
|
291 |
{
|
292 |
"cell_type": "code",
|
293 |
+
"execution_count": 144,
|
294 |
"metadata": {
|
295 |
"slideshow": {
|
296 |
"slide_type": "skip"
|
|
|
341 |
},
|
342 |
{
|
343 |
"cell_type": "code",
|
344 |
+
"execution_count": 145,
|
345 |
"metadata": {
|
346 |
"slideshow": {
|
347 |
"slide_type": "skip"
|
|
|
419 |
},
|
420 |
{
|
421 |
"cell_type": "code",
|
422 |
+
"execution_count": 146,
|
423 |
"metadata": {
|
424 |
"slideshow": {
|
425 |
"slide_type": "skip"
|
|
|
499 |
},
|
500 |
{
|
501 |
"cell_type": "code",
|
502 |
+
"execution_count": 147,
|
503 |
"metadata": {
|
504 |
"slideshow": {
|
505 |
"slide_type": "skip"
|
|
|
585 |
},
|
586 |
{
|
587 |
"cell_type": "code",
|
588 |
+
"execution_count": 148,
|
589 |
"metadata": {
|
590 |
"slideshow": {
|
591 |
"slide_type": "skip"
|
|
|
648 |
},
|
649 |
{
|
650 |
"cell_type": "code",
|
651 |
+
"execution_count": 149,
|
652 |
"metadata": {
|
653 |
"slideshow": {
|
654 |
"slide_type": "skip"
|
|
|
737 |
},
|
738 |
{
|
739 |
"cell_type": "code",
|
740 |
+
"execution_count": 150,
|
741 |
"metadata": {
|
742 |
"slideshow": {
|
743 |
"slide_type": "skip"
|
|
|
750 |
"from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score\n",
|
751 |
"\n",
|
752 |
"def evaluate_models(model='random_forest'):\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
753 |
"\n",
|
754 |
" all_models = ['random_forest', 'logistic_regression', 'knn', 'svm', 'naive_bayes', 'decision_tree', 'xgboost']\n",
|
755 |
" evaluation_score_append = []\n",
|
|
|
818 |
},
|
819 |
{
|
820 |
"cell_type": "code",
|
821 |
+
"execution_count": 151,
|
822 |
"metadata": {
|
823 |
"slideshow": {
|
824 |
"slide_type": "skip"
|
|
|
832 |
"yes",
|
833 |
"no"
|
834 |
],
|
835 |
+
"code_uid": "Select.0.40.16.25-rand28de2701",
|
836 |
"disabled": false,
|
837 |
"hidden": false,
|
838 |
"label": "Drop Duplicates",
|
839 |
+
"model_id": "1b5513f0c74f4b789b06e528c0702927",
|
840 |
"url_key": "",
|
841 |
"value": "yes",
|
842 |
"widget": "Select"
|
843 |
},
|
844 |
"application/vnd.jupyter.widget-view+json": {
|
845 |
+
"model_id": "1b5513f0c74f4b789b06e528c0702927",
|
846 |
"version_major": 2,
|
847 |
"version_minor": 0
|
848 |
},
|
|
|
856 |
{
|
857 |
"data": {
|
858 |
"application/mercury+json": {
|
859 |
+
"code_uid": "Text.0.40.15.28-rand47e76187",
|
860 |
"disabled": false,
|
861 |
"hidden": false,
|
862 |
"label": "Missing Value Threeshold",
|
863 |
+
"model_id": "d938d6a0b2744021b8a2869fc3ed8d56",
|
864 |
"rows": 1,
|
865 |
"url_key": "",
|
866 |
"value": "80",
|
867 |
"widget": "Text"
|
868 |
},
|
869 |
"application/vnd.jupyter.widget-view+json": {
|
870 |
+
"model_id": "d938d6a0b2744021b8a2869fc3ed8d56",
|
871 |
"version_major": 2,
|
872 |
"version_minor": 0
|
873 |
},
|
|
|
881 |
{
|
882 |
"data": {
|
883 |
"application/mercury+json": {
|
884 |
+
"code_uid": "Text.0.40.15.31-randbeb3d20d",
|
885 |
"disabled": false,
|
886 |
"hidden": false,
|
887 |
"label": "Variance Threshold",
|
888 |
+
"model_id": "7628bd791a434d4881994be8f0e7e104",
|
889 |
"rows": 1,
|
890 |
"url_key": "",
|
891 |
"value": "0",
|
892 |
"widget": "Text"
|
893 |
},
|
894 |
"application/vnd.jupyter.widget-view+json": {
|
895 |
+
"model_id": "7628bd791a434d4881994be8f0e7e104",
|
896 |
"version_major": 2,
|
897 |
"version_minor": 0
|
898 |
},
|
|
|
906 |
{
|
907 |
"data": {
|
908 |
"application/mercury+json": {
|
909 |
+
"code_uid": "Text.0.40.15.34-rand7204e09b",
|
910 |
"disabled": false,
|
911 |
"hidden": false,
|
912 |
"label": "Correlation Threshold",
|
913 |
+
"model_id": "9c36001207a9406290a44dfbd27296e2",
|
914 |
"rows": 1,
|
915 |
"url_key": "",
|
916 |
"value": "1",
|
917 |
"widget": "Text"
|
918 |
},
|
919 |
"application/vnd.jupyter.widget-view+json": {
|
920 |
+
"model_id": "9c36001207a9406290a44dfbd27296e2",
|
921 |
"version_major": 2,
|
922 |
"version_minor": 0
|
923 |
},
|
|
|
937 |
4,
|
938 |
5
|
939 |
],
|
940 |
+
"code_uid": "Select.0.40.16.38-rand6c036095",
|
941 |
"disabled": false,
|
942 |
"hidden": false,
|
943 |
"label": "Outlier Removal Threshold",
|
944 |
+
"model_id": "deea9036e1dd45bdaf729893fb2c03ad",
|
945 |
"url_key": "",
|
946 |
"value": "none",
|
947 |
"widget": "Select"
|
948 |
},
|
949 |
"application/vnd.jupyter.widget-view+json": {
|
950 |
+
"model_id": "deea9036e1dd45bdaf729893fb2c03ad",
|
951 |
"version_major": 2,
|
952 |
"version_minor": 0
|
953 |
},
|
|
|
968 |
"minmax",
|
969 |
"robust"
|
970 |
],
|
971 |
+
"code_uid": "Select.0.40.16.46-rand6e19100d",
|
972 |
"disabled": false,
|
973 |
"hidden": false,
|
974 |
"label": "Scaling Variables",
|
975 |
+
"model_id": "74c9a2bf7d774007a6e0aaee3c77b47a",
|
976 |
"url_key": "",
|
977 |
"value": "none",
|
978 |
"widget": "Select"
|
979 |
},
|
980 |
"application/vnd.jupyter.widget-view+json": {
|
981 |
+
"model_id": "74c9a2bf7d774007a6e0aaee3c77b47a",
|
982 |
"version_major": 2,
|
983 |
"version_minor": 0
|
984 |
},
|
|
|
998 |
"knn",
|
999 |
"most_frequent"
|
1000 |
],
|
1001 |
+
"code_uid": "Select.0.40.16.50-rand44961a40",
|
1002 |
"disabled": false,
|
1003 |
"hidden": false,
|
1004 |
"label": "Imputation Methods",
|
1005 |
+
"model_id": "e7d32db61422400db77aed46104991be",
|
1006 |
"url_key": "",
|
1007 |
"value": "mean",
|
1008 |
"widget": "Select"
|
1009 |
},
|
1010 |
"application/vnd.jupyter.widget-view+json": {
|
1011 |
+
"model_id": "e7d32db61422400db77aed46104991be",
|
1012 |
"version_major": 2,
|
1013 |
"version_minor": 0
|
1014 |
},
|
|
|
1029 |
"pca",
|
1030 |
"boruta"
|
1031 |
],
|
1032 |
+
"code_uid": "Select.0.40.16.55-rand17be4326",
|
1033 |
"disabled": false,
|
1034 |
"hidden": false,
|
1035 |
"label": "Feature Selection",
|
1036 |
+
"model_id": "fecc32733d914aff9b0ad61cd4b7b6b5",
|
1037 |
"url_key": "",
|
1038 |
"value": "none",
|
1039 |
"widget": "Select"
|
1040 |
},
|
1041 |
"application/vnd.jupyter.widget-view+json": {
|
1042 |
+
"model_id": "fecc32733d914aff9b0ad61cd4b7b6b5",
|
1043 |
"version_major": 2,
|
1044 |
"version_minor": 0
|
1045 |
},
|
|
|
1059 |
"undersampling",
|
1060 |
"rose"
|
1061 |
],
|
1062 |
+
"code_uid": "Select.0.40.16.59-rand8b476756",
|
1063 |
"disabled": false,
|
1064 |
"hidden": false,
|
1065 |
"label": "Imbalance Treatment",
|
1066 |
+
"model_id": "e9479d12145f46009daeac5020fcea48",
|
1067 |
"url_key": "",
|
1068 |
"value": "none",
|
1069 |
"widget": "Select"
|
1070 |
},
|
1071 |
"application/vnd.jupyter.widget-view+json": {
|
1072 |
+
"model_id": "e9479d12145f46009daeac5020fcea48",
|
1073 |
"version_major": 2,
|
1074 |
"version_minor": 0
|
1075 |
},
|
|
|
1092 |
"decision_tree",
|
1093 |
"xgboost"
|
1094 |
],
|
1095 |
+
"code_uid": "Select.0.40.16.64-randaa2cafdf",
|
1096 |
"disabled": false,
|
1097 |
"hidden": false,
|
1098 |
"label": "Model Selection",
|
1099 |
+
"model_id": "a17088a739d847fcad51c1efc4aae6ff",
|
1100 |
"url_key": "",
|
1101 |
"value": "random_forest",
|
1102 |
"widget": "Select"
|
1103 |
},
|
1104 |
"application/vnd.jupyter.widget-view+json": {
|
1105 |
+
"model_id": "a17088a739d847fcad51c1efc4aae6ff",
|
1106 |
"version_major": 2,
|
1107 |
"version_minor": 0
|
1108 |
},
|
|
|
1210 |
},
|
1211 |
{
|
1212 |
"cell_type": "code",
|
1213 |
+
"execution_count": 152,
|
1214 |
"metadata": {
|
1215 |
"slideshow": {
|
1216 |
"slide_type": "skip"
|
|
|
1291 |
},
|
1292 |
{
|
1293 |
"cell_type": "code",
|
1294 |
+
"execution_count": 153,
|
1295 |
"metadata": {
|
1296 |
"slideshow": {
|
1297 |
"slide_type": "skip"
|
|
|
1329 |
},
|
1330 |
{
|
1331 |
"cell_type": "code",
|
1332 |
+
"execution_count": 154,
|
1333 |
"metadata": {
|
1334 |
"slideshow": {
|
1335 |
"slide_type": "slide"
|
1336 |
}
|
1337 |
},
|
1338 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1339 |
{
|
1340 |
"data": {
|
1341 |
"text/html": [
|
|
|
1439 |
},
|
1440 |
{
|
1441 |
"data": {
|
1442 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAHACAYAAAA7jMYcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvfElEQVR4nO3deViU9f7/8dcIgrgwLgSKolIuoaIifkUsTTNBLc1vtp5yT+ukprkef6Wd03I0zbTNTuXe8VvWaTOzxVxyhRLFFVGPC4ogCghiCAjz+8OanHBhZHDyw/NxXVynubnvm/dwHX16z9xz3xabzWYTAAAGq+DuAQAAKGvEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxPN09QGkUFRXp+PHjqlatmiwWi7vHAQBcRzabTWfOnFFgYKAqVLjysdsNHbvjx48rKCjI3WMAANzo6NGjqlev3hXXuaFjV61aNUmSV7MBsnh4uXka4PpLWvuqu0cA3OZMdrYaBQfZW3AlN3Tsfnvp0uLhRexQLvn6+rp7BMDtSvI2FieoAACMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesYODoQ/crp+WTtKJ9TN0Yv0MrV00VlG3NXNYp2lwgD6Z/YRS181Q2oZX9eOisQqqXcNhnYiWwfrm3ZE6tWmmUtZN13fvj1Il74rX86kAZerdd+bo1sbBql61kjq0C9eGDevdPRKuwNPdA+DPJfnEaU1+80v9N+mUJOmxXhH6ZNYwtX94mhIOpiq4np9WzR+jRV9s0kvvfK2snFzdGlxb5/IK7PuIaBmsL996Sq8u+F5jXvlE+ecL1bJJXRUV2dz1tACX+uTjpRo/drRef3OOIjvcprnvv6s+9/TQ1h17VL9+fXePh0uw2Gy2G/ZvoOzsbFmtVnmHDpXFw8vd4xgree0r+n+zv9CiLzZr8bRBKigo1JDJiy+7/o+LxmpV7F69MOfr6zhl+ZT581vuHqFc6tghQmFhbfTG2+/Yl7UODVGv3n304stT3ThZ+ZKdna2AWlZlZWXJ19f3iuvyMiYuq0IFix6IDlcVHy/F7jgki8Wi7rc31/6kNC17e7iOrJqqdYvHqVfnlvZtbqpRVe1aButkRo7WLByjwz/8U9/PHaUOrW924zMBXCc/P1/btsapa7coh+Vd74pSzOZNbpoKV0PsUEzzRoE6uXGmsmJn641nH9JDY9/X3oOp8q9ZVdWqVNK4Qd20ctMe9frrW1q2Zrs+mvm4bg9vJEkKrucnSXr2iZ6a/9km3Tt8juITjmrFuyN1S/2b3Pm0AJc4deqUCgsL5e8f4LA8ICBAJ06kumkqXA3v2aGYfYdPKOLhqaperbL6dG2t91/op6jHX1fWmVxJ0vK1O/XmkjWSpB37khXR6mYNvf92bYg7oAoVLJKkeZ9u0AfLYiRJ2xOPqXO7phpwb6SmvLnMPU8KcDGLxeLw2GazFVuGPw+O7FBMwflCHTx6Slv3JGnKm8u0c1+yhj/SWacyc1RQUKiEgykO6yceTLWfjZlyMluSlHDQ8V+4iYdSi52xCdyI/Pz85OHhUewoLi0trdjRHv48iB2uyiKLvL08VXC+UHF7jqhJA8c/0I0b+CspJVOSdOR4uo6nnVaThv4O6zRq4K+klIzrNjNQVry8vBTWJlyrf1jpsHz1qpVqH9nBTVPhangZEw7+MaKXvt+4R0dTM1WtSiU9EB2uTm0bq/fwOZKkWYt+0AevDNaGrQf045Z9iurQTD07tVD00Nft+5i16Ac99+Td2rkvWdsTj+mxXhFq2jBAfxk/z11PC3Cpp0eP0ZCB/dQmvK0i2kdq3tz3dDQpSY8Pe9Ldo+EyiB0c+Neqpnkv9VdtP19l5ZzTrv3J6j18jlbH7pUkLVuzQyNf/kjjB0dp5oT7te9Imh4ZP1eb4g/a9/HW/61VJe+Kmj62r2pYK2vnvmTd89e3dOjYKXc9LcClHnjwIWWkp+ufL7+g1JQUNW/eQl98tUINGjRw92i4DLd/zm7OnDmaMWOGUlJS1Lx5c82ePVsdO3Ys0bZ8zg7lHZ+zQ3l2w3zObunSpRo9erSeffZZbdu2TR07dlSPHj2UlJTkzrEAAIZxa+xee+01DRkyRI8//rhCQkI0e/ZsBQUF6Z133rn6xgAAlJDbYpefn6+4uDhFRTlehSAqKkqbNl36KgR5eXnKzs52+AIA4GrcFrvfrkIQEFD8KgSpqZe+CsHUqVNltVrtX0FBQddjVADADc7tn7Nz5ioEkyZNUlZWlv3r6NGj12NEAMANzm2x++0qBH88iktLSyt2tPcbb29v+fr6Onzh2tS0VtGRVVNVv05Nt87RvFGgDnz7oipX4mxaXD/p6emqH+ivI4cPu3WOXTt36paG9XT27Fm3zlEeuC12Xl5eCg8P18qVjlchWLlypTp04CoEZW384CitWLfTflWTV8f31cYlE3Q6dpZiPvpbifbhVdFTr018QEdXT9OpTTP1yewnVNe/usM61av5aN6L/ZW6boZS183QvBf7y1rVx/793QeOa8uuIxr5WBeXPTfgama8MlU97+6lBg0bSpKSkpLUt08v1bJWUb3afhoz+mnl5+dfcR95eXl6ZtRI1avtp1rWKrr/f3vr2LFjDutkZmZq8IB+CqhlVUAtqwYP6KfTp0/bv98iNFRt/6ed3nx9lqufIv7ArS9jjhkzRnPnztX8+fOVkJCgZ555RklJSXrySa5CUJYqeVfUgD6RWvj5Zvsyi8WixV/G6D/fby3xfmaM76veXVqq/6QF6jpolqr6eOnTN560XwxakhZOHaiWTevp3hFzdO+IOWrZtJ7mvdTfYT+Ll8Vo2AMdHbYDykpubq4WLZingYMflyQVFhbqvt536+zZs1q1doMWL/lIX3z+qSaOH3vF/YwfM1rLvvxci5d8pFVrNygnJ0d9771HhYWF9nUG9vuLdmyP15fLv9WXy7/Vju3xGjKwn8N++g8YpPfefcdhO7ieW6+g8tBDDyk9PV0vvPCCUlJS1KJFC61YwVUIylr0bc10vrBQsTsO2ZeNnf4fSZJfjZ5q0bjuVffhW7WSBvaJ1JDnFmtNbKIkafBzi7X/mxd1Z8St+mFzgpoGByj6tubq1G+Gft51RJI0/MX/04+Lx6lxA3/tP5ImSVq5KUE1rVXUMbyxfvx5n6ufLuDgu2+/kaenp9pHRkqSflj5vRIS9mj/iqMKDAyUJE2bPlPDhgzUP158+ZJvl2RlZWnhgnmat/AD3dn1LknS/EX/VuPgIK1e9YO6RUVrb0KCvv/uW/24IUbtIiIkSW//63117hipfYmJatK0qSSpW1S0MtLTtX7dj+rc5c7r8Ssol9x+gspTTz2lw4cPKy8vT3FxcerUqZO7RzLe7W0aaeue0n1wPyykvrwqeuqHzQn2ZSkns7T7v8fVvlWwJCmiZbBOn/nFHjpJ+mnnYZ0+84vat/r9Zq4F5wu1c1+ybgu7pVQzASWxYf06tQlva38cG7NZzZu3sIdOuhCgvLw8bdsad8l9bNsap4KCAt110Q1cAwMD1bx5C/sNXGNjNstqtdpDJ0kR7dvLarU63OTVy8tLoS1baeOG9S57jijO7bHD9dcgsKZSTmaVah+1a/kqL79Ap3+9x91v0tLPKKDWhX8JB9Ty1cmMnGLbnszIUYCf47+Wj6edVoPAWqWaCSiJI0cOq06d38N2IjVV/n84Ka5GjRry8vK67MegUlNT5eXlpRo1HG9b5R8QoBO/bnPiRKpu8vcvtu1N/v7Fbg8UWLeu20+WMR2xK4cqeXvpXN75Mtm3xWLRxRdbvdSlVy0WSX9YnptXoMqVKpbJTMDFzuXmqlKlSg7LLvVxp2u5Gesft7ncfvWH5T6VfPRL7i9O/Sw4h9iVQ+mnc1TDt3Kp9pGani1vr4qqXs3HYflNNasqLf3ClW1OpGfLv1a1Ytv61aiqE+lnHJbVsFbWqcziR4GAq9Wq5afM05n2xwG1a9uPxn6TmZmpgoKCy34Mqnbt2srPz1dmZqbD8pNpafajxICA2ko7caLYtqdOnlTAH27ympmZIT+/m67p+aBkiF05tH3vMd16c+1S7WNbQpLyC86ra/tb7ctq+/mq+S2Bitl+4cSX2B2HVL1aZbVt/vsJR//TooGqV6usmO0HHfbX/JZAxSc6nrYNlIVWYWHau2eP/XFE+0jt3r1LKSkp9mU/rPxe3t7eCmsTfsl9hLUJV8WKFbXqohu4pqSkaPfuXfYbuEa0j1RWVpZ+/ukn+zo/xcYqKyur2E1ed+/epdatw1zy/HBpxK4cWrk5Qc1uruNwVHZzkJ9aNqmrAD9f+XhXVMsmddWySV1V9PSQJAXeZFX8Z8/Zw5Wdc04Lv9isaWPuU+d2TdSqaT3Nf2mAdh04br/3XeKhE/pu4269PeURtQttqHahDfX25L/o6x932s/ElKT6dWoq0N+qNb9uB5Slbt2itWfPbvtR2V3dohQS0kxDBvZT/LZtWrN6lSZNHKdBQ4baz8RMTk5Wqxa32sNltVo1cNAQ/W3CWK1ZvUrx27Zp8IDH1KJFqP3szFtDQhQV3V3Dnxyq2JgYxcbEaPiTQ9Xz7nvsZ2JK0pHDh3U8OVldft0OZYObt5ZDuw8c19aEJPWNaqN5n26UJL0z5VF1atvYvk7s0kmSpKY9pygpJUOenh5qGlxbPhdd6WTCq5+qsLBI/35liHy8K2rNT4kaNuoDFRX9/n7coP+3SDMn3K+v5gyXJH394049M+0Th3ke7NFWP2zeq6QUx5eEgLLQIjRUbcLb6tNPPtbjw56Qh4eHPlv2tUaPfEp33nGbfHx89ODDf9G06a/atzlfUKB9iYnKveh9tekzZ8nD01OPPfKgcnNz1eXOrnpv3kJ5eHjY11mweInGjn5avXpeOGvz7nt6a9Ybjvcg/Hjph7qrWxQfuSpjbr95a2lw89ZrF317M0195n8Vfv8/L3kSyfXiVdFTu76cogGTFmrzH17axNVx89Zr8+03KzRp4jjFxe9ShQrue4ErLy9PLUIaa9EHH6rDbbe5bY4blTM3b+XIrpz6bsMeNQryV11/q46dOO22OerXqalX5n1H6HBdde/RUwf271dycrJb756SdOSIJv7tWUJ3HXBkB9zAOLJDeebMkR0nqAAAjEfsAADGI3YAAOMROwCA8YgdAMB4xA4AYDxiBwAwHrEDABiP2AEAjEfsAADGI3YAAOMROwCA8YgdAMB4xA4AYDxiBwAwHrEDABiP2AEAjEfsAADGI3YAAOMROwCA8YgdAMB4xA4AYDxiBwAwHrEDABiP2AEAjEfsAADGI3YAAOMROwCA8YgdAMB4xA4AYDxiBwAwHrEDABiP2AEAjEfsAADGI3YAAOMROwCA8YgdAMB4xA4AYDxiBwAwHrEDABiP2AEAjEfsAADGI3YAAOMROwCA8YgdAMB4xA4AYDxiBwAwHrEDABiP2AEAjOdZkpWWLVtW4h327t37mocBAKAslCh2ffr0KdHOLBaLCgsLSzMPAAAuV6LYFRUVlfUcAACUmVK9Z3fu3DlXzQEAQJlxOnaFhYV68cUXVbduXVWtWlUHDx6UJE2ePFnz5s1z+YAAAJSW07F7+eWXtXDhQk2fPl1eXl725aGhoZo7d65LhwMAwBWcjt3ixYv13nvv6dFHH5WHh4d9ecuWLbV3716XDgcAgCs4Hbvk5GQ1atSo2PKioiIVFBS4ZCgAAFzJ6dg1b95c69evL7b8k08+UVhYmEuGAgDAlUr00YOLPf/88+rXr5+Sk5NVVFSkzz77TImJiVq8eLGWL19eFjMCAFAqTh/Z9erVS0uXLtWKFStksVg0ZcoUJSQk6KuvvlK3bt3KYkYAAErF6SM7SYqOjlZ0dLSrZwEAoExcU+wkacuWLUpISJDFYlFISIjCw8NdORcAAC7jdOyOHTumRx55RBs3blT16tUlSadPn1aHDh304YcfKigoyNUzAgBQKk6/Zzd48GAVFBQoISFBGRkZysjIUEJCgmw2m4YMGVIWMwIAUCpOH9mtX79emzZtUtOmTe3LmjZtqjfffFO33XabS4cDAMAVnD6yq1+//iU/PH7+/HnVrVvXJUMBAOBKTsdu+vTpGjlypLZs2SKbzSbpwskqo0aN0quvvuryAQEAKK0SvYxZo0YNWSwW++OzZ88qIiJCnp4XNj9//rw8PT01ePDgEt/oFQCA66VEsZs9e3YZjwEAQNkpUewGDBhQ1nMAAFBmrvlD5ZKUm5tb7GQVX1/fUg0EAICrOX2CytmzZzVixAj5+/uratWqqlGjhsMXAAB/Nk7HbsKECVq9erXmzJkjb29vzZ07V//4xz8UGBioxYsXl8WMAACUitMvY3711VdavHixOnfurMGDB6tjx45q1KiRGjRooCVLlujRRx8tizkBALhmTh/ZZWRkKDg4WNKF9+cyMjIkSbfffrvWrVvn2ukAAHABp2N388036/Dhw5KkZs2a6eOPP5Z04YjvtwtDAwDwZ+J07AYNGqTt27dLkiZNmmR/7+6ZZ57R+PHjXT4gAACl5fR7ds8884z9v7t06aK9e/dqy5YtuuWWW9SqVSuXDgcAgCuU6nN20oULQ9evX98VswAAUCZKFLs33nijxDt8+umnr3kYAADKQoliN2vWrBLtzGKxEDsAwJ9OiWJ36NChsp4DAIAy4/TZmAAA3GiIHQDAeMQOAGA8YgcAMB6xAwAY75pit379ej322GOKjIxUcnKyJOmDDz7Qhg0bXDocAACu4HTsPv30U0VHR8vHx0fbtm1TXl6eJOnMmTP65z//6fIBAQAoLadj99JLL+lf//qX3n//fVWsWNG+vEOHDtq6datLhwMAwBWcjl1iYqI6depUbLmvr69Onz7tipkAAHApp2NXp04dHThwoNjyDRs26Oabb3bJUAAAuJLTsXviiSc0atQoxcbGymKx6Pjx41qyZInGjRunp556qixmBACgVJy+xc+ECROUlZWlLl266Ny5c+rUqZO8vb01btw4jRgxoixmBACgVCw2m812LRv+8ssv2rNnj4qKitSsWTNVrVrV1bNdVXZ2tqxWq7xDh8ri4XXdfz7gbpk/v+XuEQC3yc7OVkAtq7KysuTr63vFda/55q2VK1dW27Ztr3VzAACuG6dj16VLF1kslst+f/Xq1aUaCAAAV3M6dq1bt3Z4XFBQoPj4eO3atUsDBgxw1VwAALiM07G73F3L//73vysnJ6fUAwEA4GouuxD0Y489pvnz57tqdwAAuIzLYrd582ZVqlTJVbsDAMBlnH4Z87777nN4bLPZlJKSoi1btmjy5MkuGwwAAFdxOnZWq9XhcYUKFdS0aVO98MILioqKctlgAAC4ilOxKyws1MCBAxUaGqqaNWuW1UwAALiUU+/ZeXh4KDo6WllZWWU1DwAALuf0CSqhoaE6ePBgWcwCAECZcDp2L7/8ssaNG6fly5crJSVF2dnZDl8AAPzZOH2CSvfu3SVJvXv3drhsmM1mk8ViUWFhoeumAwDABZyO3Zo1a8piDgAAyozTsQsODlZQUFCxi0HbbDYdPXrUZYMBAOAqTr9nFxwcrJMnTxZbnpGRoeDgYJcMBQCAKzkdu9/em/ujnJwcLhcGAPhTKvHLmGPGjJEkWSwWTZ48WZUrV7Z/r7CwULGxscVu/wMAwJ9BiWO3bds2SReO7Hbu3CkvLy/797y8vNSqVSuNGzfO9RMCAFBKJY7db2dhDho0SK+//rp8fX3LbCgAAFzJ6bMxFyxYUBZzAABQZlx2PzsAAP6siB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGI/YAQCMR+wAAMYjdriqcYOjtOHf45W24VUdWTVVH782VI0b+Bdbr2lwgD6Z/YRS181Q2oZX9eOisQqqXcMNEwNl79135ujWxsGqXrWSOrQL14YN6909Eq6A2OGqOrZppH8tXac7+r+qe/76ljw8PLT8nRGqXMnLvk5wPT+tmj9G+w6lKnro62r30FRNff9bncsrcOPkQNn45OOlGj92tCb+7VnF/LxNHW7vqD739FBSUpK7R8NlWGw2m83dQ1yr7OxsWa1WeYcOlcXD6+obwCX8alTV0dXTdNeQWdq49b+SpMXTBqmgoFBDJi9283TlS+bPb7l7hHKpY4cIhYW10Rtvv2Nf1jo0RL1699GLL09142TlS3Z2tgJqWZWVlSVfX98rrsuRHZzmW7WSJCkz6xdJksViUffbm2t/UpqWvT1cR1ZN1brF49Src0t3jgmUifz8fG3bGqeu3aIclne9K0oxmze5aSpcDbGD014Z21cbtx7Qnv+mSJL8a1ZVtSqVNG5QN63ctEe9/vqWlq3Zro9mPq7bwxu5eVrAtU6dOqXCwkL5+wc4LA8ICNCJE6lumgpX4+nuAXBjmfW3BxXaOFBdB82yL6tQ4cK/mZav3ak3l6yRJO3Yl6yIVjdr6P23a0PcAbfMCpQli8Xi8NhmsxVbhj8PjuxQYq9NfED33BGq6KFvKDnttH35qcwcFRQUKuFgisP6iQdTORsTxvHz85OHh0exo7i0tLRiR3v48yB2KJFZEx/QvXe2Uvcn3tCR4+kO3ys4X6i4PUfUpIHjH/TGDfyVlJJ5PccEypyXl5fC2oRr9Q8rHZavXrVS7SM7uGkqXA0vY+KqZk96UA/1aKsHnnlPOWfPKaBWNUlSVs45+0cLZi36QR+8Mlgbth7Qj1v2KapDM/Xs1ELRQ1935+hAmXh69BgNGdhPbcLbKqJ9pObNfU9Hk5L0+LAn3T0aLsOtHz1Yt26dZsyYobi4OKWkpOjzzz9Xnz59Srw9Hz24PnK3Xfr09qFTPtC/v4q1P+5/b3uNHxyluv7Vte9Iml7619davnbn9RqzXOKjB+7z7jtz9NrM6UpNSVHz5i00feYs3d6xk7vHKlec+eiBW2P3zTffaOPGjWrTpo369u1L7AAnETuUZ87Ezq0vY/bo0UM9evRw5wgAgHLghnrPLi8vT3l5efbH2dnZbpwGAHCjuKHOxpw6daqsVqv9KygoyN0jAQBuADdU7CZNmqSsrCz719GjR909EgDgBnBDxc7b21u+vr4OX7g2Na1VdGTVVNWvU9OtczRvFKgD377ocAcFoKylp6erfqC/jhw+7NY5du3cqVsa1tPZs2fdOkd5cEPFDq4zfnCUVqzbqaSUDEnSq+P7auOSCTodO0sxH/2tRPvwquip1yY+oKOrp+nUppn6ZPYTqutf3WGd6tV8NO/F/kpdN0Op62Zo3ov9Za3qY//+7gPHtWXXEY18rIvLnhtwNTNemaqed/dSg4YNJUlJSUnq26eXalmrqF5tP40Z/bTy8/OvuI+8vDw9M2qk6tX2Uy1rFd3/v7117Ngxh3UyMzM1eEA/BdSyKqCWVYMH9NPp06ft328RGqq2/9NOb74+Syhbbo1dTk6O4uPjFR8fL0k6dOiQ4uPjuSdUGavkXVED+kRq4eeb7cssFosWfxmj/3y/tcT7mTG+r3p3aan+kxao66BZqurjpU/feFIVKvx+fcCFUweqZdN6unfEHN07Yo5aNq2neS/1d9jP4mUxGvZAR4ftgLKSm5urRQvmaeDgxyVJhYWFuq/33Tp79qxWrd2gxUs+0heff6qJ48decT/jx4zWsi8/1+IlH2nV2g3KyclR33vvUWFhoX2dgf3+oh3b4/Xl8m/15fJvtWN7vIYM7Oewn/4DBum9d99x2A6u59bYbdmyRWFhYQoLC5MkjRkzRmFhYZoyZYo7xzJe9G3NdL6wULE7DtmXjZ3+H7378TodOpZ+hS1/51u1kgb2idTfXvtca2ITtT3xmAY/t1gtGgXqzohbJV24c3n0bc311AtLFLvjkGJ3HNLwF/9Pd98R6nCn85WbElTTWkUdwxu79okCl/Ddt9/I09NT7SMjJUk/rPxeCQl7NH/Rv9U6LEx3dr1L06bP1IJ571/2jO+srCwtXDBP06bP1J1d71LrsDDNX/Rv7dq1U6tX/SBJ2puQoO+/+1Zz3p2r9pGRah8Zqbf/9b5WfL1c+xIT7fvqFhWtjPR0rV/3Y9k/+XLMrbHr3LmzbDZbsa+FCxe6cyzj3d6mkbbuKd3Rc1hIfXlV9NQPmxPsy1JOZmn3f4+rfatgSVJEy2CdPvOLft51xL7OTzsP6/SZX9S+1c32ZQXnC7VzX7JuC7ulVDMBJbFh/Tq1CW9rfxwbs1nNm7dQYGCgfVm3qGjl5eVp29a4S+5j29Y4FRQU6K6L7mkXGBio5s1b2O9pFxuzWVarVe0iIuzrRLRvL6vV6nDfOy8vL4W2bKWNG9a77DmiON6zK4caBNZUysmsUu2jdi1f5eUX6PSZXIflaelnFFDrwolDAbV8dTIjp9i2JzNyFODneHLR8bTTahBYq1QzASVx5Mhh1anze9hOpKbKP8DxIuY1atSQl5eXUlMvfX+61NRUeXl5qUYNx7t6+AcE6MSv25w4kaqb/P2LbXuTv3+xOyYE1q3r9pNlTEfsyqFK3l46l3e+TPZtsVh08fXnLnU1OotF0h+W5+YVqHKlimUyE3Cxc7m5qlSpksOyS92H7lruT/fHbS63X/1huU8lH/2S+4tTPwvOIXblUPrpHNXwrVyqfaSmZ8vbq6KqV/NxWH5TzapKS7/wPseJ9Gz5/3qHhIv51aiqE+lnHJbVsFbWqcziR4GAq9Wq5afM07/feiqgdm370dhvMjMzVVBQoICAS9+frnbt2srPz1dmpuMtrE6mpdmPEgMCaivtxIli2546eVIBf7jvXWZmhvz8brqm54OSIXbl0Pa9x3TrzbVLtY9tCUnKLzivru1vtS+r7eer5rcEKmb7hRNfYnccUvVqldW2eQP7Ov/TooGqV6usmO0HHfbX/JZAxSc6nrYNlIVWYWHau2eP/XFE+0jt3r1LKSm/33z4h5Xfy9vbW2Ftwi+5j7A24apYsaJWXXRPu5SUFO3evct+T7uI9pHKysrSzz/9ZF/np9hYZWVlFbvv3e7du9S6dZhLnh8ujdiVQys3J6jZzXUcjspuDvJTyyZ1FeDnKx/vimrZpK5aNqmrip4ekqTAm6yK/+w5e7iyc85p4RebNW3MfercrolaNa2n+S8N0K4Dx7U6dq8kKfHQCX23cbfenvKI2oU2VLvQhnp78l/09Y87tf9Imv1n169TU4H+Vq35dTugLHXrFq09e3bbj8ru6halkJBmGjKwn+K3bdOa1as0aeI4DRoy1H7hiuTkZLVqcas9XFarVQMHDdHfJozVmtWrFL9tmwYPeEwtWoTqzq53SZJuDQlRVHR3DX9yqGJjYhQbE6PhTw5Vz7vvUZOmTe3zHDl8WMeTk9Xl1+1QNm6oC0HDNXYfOK6tCUnqG9VG8z7dKEl6Z8qj6tT291P/Y5dOkiQ17TlFSSkZ8vT0UNPg2vK56EonE179VIWFRfr3K0Pk411Ra35K1LBRH6io6Pf34wb9v0WaOeF+fTVnuCTp6x936plpnzjM82CPtvph817uao7rokVoqNqEt9Wnn3ysx4c9IQ8PD3227GuNHvmU7rzjNvn4+OjBh/+iadNftW9zvqBA+xITlXvR+2rTZ86Sh6enHnvkQeXm5qrLnV313ryF8vDwsK+zYPESjR39tHr1vHDW5t339NasNxxvy/Tx0g91V7coNWjQQCg7br2fXWlxP7trF317M0195n8Vfv8/L3kSyfXiVdFTu76cogGTFmrzH17axNVxP7tr8+03KzRp4jjFxe9ShQrue4ErLy9PLUIaa9EHH6rDbbe5bY4b1Q1zPzu4z3cb9qhRkL/q+lt17MRpt81Rv05NvTLvO0KH66p7j546sH+/kpOT3Xr3lKQjRzTxb88SuuuAIzvgBsaRHcozZ47sOEEFAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeJ7uHqA0bDbbhf8tzHfzJIB7ZGdnu3sEwG3O/Pr//99acCUWW0nW+pM6duyYgoKC3D0GAMCNjh49qnr16l1xnRs6dkVFRTp+/LiqVasmi8Xi7nHKnezsbAUFBeno0aPy9fV19zjAdcefAfey2Ww6c+aMAgMDVaHCld+Vu6FfxqxQocJVa46y5+vryx90lGv8GXAfq9VaovU4QQUAYDxiBwAwHrHDNfP29tbzzz8vb29vd48CuAV/Bm4cN/QJKgAAlARHdgAA4xE7AIDxiB0AwHjEDgBgPGKHazZnzhwFBwerUqVKCg8P1/r16909EnBdrFu3Tr169VJgYKAsFou++OILd4+EqyB2uCZLly7V6NGj9eyzz2rbtm3q2LGjevTooaSkJHePBpS5s2fPqlWrVnrrrbfcPQpKiI8e4JpERESoTZs2euedd+zLQkJC1KdPH02dOtWNkwHXl8Vi0eeff64+ffq4exRcAUd2cFp+fr7i4uIUFRXlsDwqKkqbNm1y01QAcHnEDk47deqUCgsLFRAQ4LA8ICBAqampbpoKAC6P2OGa/fG2SjabjVstAfhTInZwmp+fnzw8PIodxaWlpRU72gOAPwNiB6d5eXkpPDxcK1eudFi+cuVKdejQwU1TAcDl3dA3b4X7jBkzRv369VPbtm0VGRmp9957T0lJSXryySfdPRpQ5nJycnTgwAH740OHDik+Pl41a9ZU/fr13TgZLoePHuCazZkzR9OnT1dKSopatGihWbNmqVOnTu4eCyhza9euVZcuXYotHzBggBYuXHj9B8JVETsAgPF4zw4AYDxiBwAwHrEDABiP2AEAjEfsAADGI3YAAOMROwCA8YgdcB00bNhQs2fPtj92192t//73v6t169aX/f7atWtlsVh0+vTpEu+zc+fOGj16dKnmWrhwoapXr16qfQBXQuwAN0hJSVGPHj1KtO7VAgXg6rg2JlBC+fn58vLycsm+ateu7ZL9ACgZjuxQLnXu3FkjRozQiBEjVL16ddWqVUvPPfecLr56XsOGDfXSSy9p4MCBslqtGjp0qCRp06ZN6tSpk3x8fBQUFKSnn35aZ8+etW+XlpamXr16ycfHR8HBwVqyZEmxn//HlzGPHTumhx9+WDVr1lSVKlXUtm1bxcbGauHChfrHP/6h7du3y2KxyGKx2K+9mJWVpWHDhsnf31++vr668847tX37doefM23aNAUEBKhatWoaMmSIzp0759TvKT09XY888ojq1aunypUrKzQ0VB9++GGx9c6fP3/F32V+fr4mTJigunXrqkqVKoqIiNDatWudmgUoDWKHcmvRokXy9PRUbGys3njjDc2aNUtz5851WGfGjBlq0aKF4uLiNHnyZO3cuVPR0dG67777tGPHDi1dulQbNmzQiBEj7NsMHDhQhw8f1urVq/Wf//xHc+bMUVpa2mXnyMnJ0R133KHjx49r2bJl2r59uyZMmKCioiI99NBDGjt2rJo3b66UlBSlpKTooYceks1m0913363U1FStWLFCcXFxatOmjbp27aqMjAxJ0scff6znn39eL7/8srZs2aI6depozpw5Tv2Ozp07p/DwcC1fvly7du3SsGHD1K9fP8XGxjr1uxw0aJA2btyojz76SDt27NADDzyg7t27a//+/U7NA1wzG1AO3XHHHbaQkBBbUVGRfdnEiRNtISEh9scNGjSw9enTx2G7fv362YYNG+awbP369bYKFSrYcnNzbYmJiTZJtpiYGPv3ExISbJJss2bNsi+TZPv8889tNpvN9u6779qqVatmS09Pv+Sszz//vK1Vq1YOy1atWmXz9fW1nTt3zmH5LbfcYnv33XdtNpvNFhkZaXvyyScdvh8REVFsXxdbs2aNTZItMzPzsuv07NnTNnbsWPvjq/0uDxw4YLNYLLbk5GSH/XTt2tU2adIkm81msy1YsMBmtVov+zOB0uI9O5Rb7du3l8VisT+OjIzUzJkzVVhYKA8PD0lS27ZtHbaJi4vTgQMHHF6atNlsKioq0qFDh7Rv3z55eno6bHfrrbde8UzD+Ph4hYWFqWbNmiWePS4uTjk5OapVq5bD8tzcXP33v/+VJCUkJBS7v2BkZKTWrFlT4p9TWFioadOmaenSpUpOTlZeXp7y8vJUpUoVh/Wu9LvcunWrbDabmjRp4rBNXl5esfmBskLsgCv441/qRUVFeuKJJ/T0008XW7d+/fpKTEyUJIe/+K/Gx8fH6bmKiopUp06dS77v5cpT+GfOnKlZs2Zp9uzZCg0NVZUqVTR69Gjl5+c7NauHh4fi4uLs/4j4TdWqVV02K3AlxA7lVkxMTLHHjRs3LvYX8sXatGmj3bt3q1GjRpf8fkhIiM6fP68tW7aoXbt2kqTExMQrfm6tZcuWmjt3rjIyMi55dOfl5aXCwsJic6SmpsrT01MNGza87CwxMTHq37+/w3N0xvr163Xvvffqsccek3QhXPv371dISIjDelf6XYaFhamwsFBpaWnq2LGjUz8fcBVOUEG5dfToUY0ZM0aJiYn68MMP9eabb2rUqFFX3GbixInavHmzhg8frvj4eO3fv1/Lli3TyJEjJUlNmzZV9+7dNXToUMXGxiouLk6PP/74FY/eHnnkEdWuXVt9+vTRxo0bdfDgQX366afavHmzpAtnhR46dEjx8fE6deqU8vLydNdddykyMlJ9+vTRd999p8OHD2vTpk167rnntGXLFknSqFGjNH/+fM2fP1/79u3T888/r927dzv1O2rUqJFWrlypTZs2KSEhQU888YRSU1Od+l02adJEjz76qPr376/PPvtMhw4d0s8//6xXXnlFK1ascGoe4FoRO5Rb/fv3V25urtq1a6fhw4dr5MiRGjZs2BW3admypX788Uft379fHTt2VFhYmCZPnqw6derY11mwYIGCgoJ0xx136L777rN/POByvLy89P3338vf3189e/ZUaGiopk2bZj/C7Nu3r7p3764uXbropptu0ocffiiLxaIVK1aoU6dOGjx4sJo0aaKHH35Yhw8fVkBAgCTpoYce0pQpUzRx4kSFh4fryJEj+utf/+rU72jy5Mlq06aNoqOj1blzZ3uUnf1dLliwQP3799fYsWPVtGlT9e7dW7GxsQoKCnJqHuBaWWy2iz4MA5QTnTt3VuvWrR0u4QXAXBzZAQCMR+wAAMbjZUwAgPE4sgMAGI/YAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMAGO//A4g1l8n1RZM6AAAAAElFTkSuQmCC",
|
1443 |
"text/plain": [
|
1444 |
+
"<Figure size 500x500 with 1 Axes>"
|
1445 |
]
|
1446 |
},
|
1447 |
"metadata": {},
|
|
|
1474 |
"\n",
|
1475 |
"#change the size of the graph\n",
|
1476 |
"\n",
|
1477 |
+
"plt.rcParams['figure.figsize'] = [5, 5]\n",
|
1478 |
"\n",
|
1479 |
"fig, ax = plot_confusion_matrix(\n",
|
1480 |
" conf_mat=conf_matrix,\n",
|
|
|
1484 |
]
|
1485 |
},
|
1486 |
{
|
1487 |
+
"cell_type": "code",
|
1488 |
+
"execution_count": 155,
|
1489 |
+
"metadata": {
|
1490 |
+
"slideshow": {
|
1491 |
+
"slide_type": "slide"
|
1492 |
+
}
|
1493 |
+
},
|
1494 |
+
"outputs": [
|
1495 |
+
{
|
1496 |
+
"name": "stdout",
|
1497 |
+
"output_type": "stream",
|
1498 |
+
"text": [
|
1499 |
+
"Have the duplicates been removed? yes\n",
|
1500 |
+
"What is the missing values threshold? 80\n",
|
1501 |
+
"What is the variance threshold? 0.0\n",
|
1502 |
+
"How many features have been removed? 145\n",
|
1503 |
+
"---------------------\n",
|
1504 |
+
"What is the outlier removal threshold? none\n",
|
1505 |
+
"How many outliers have been removed? 0\n",
|
1506 |
+
"---------------------\n",
|
1507 |
+
"What is the scaling method? none\n",
|
1508 |
+
"---------------------\n",
|
1509 |
+
"What is the imputation method? mean\n",
|
1510 |
+
"---------------------\n",
|
1511 |
+
"What is the feature selection method? none\n",
|
1512 |
+
"What is the number of features selected? 445\n",
|
1513 |
+
"---------------------\n",
|
1514 |
+
"What is the imbalance treatment method? none\n",
|
1515 |
+
"---------------------\n",
|
1516 |
+
"What is the model? random_forest\n"
|
1517 |
+
]
|
1518 |
+
}
|
1519 |
+
],
|
1520 |
"source": [
|
1521 |
+
"print('Have the duplicates been removed?', drop_duplicates_var)\n",
|
1522 |
+
"print('What is the missing values threshold?', missing_values_threshold_var)\n",
|
1523 |
+
"print('What is the variance threshold?', variance_threshold_var)\n",
|
1524 |
+
"print('How many features have been removed?', len(dropped))\n",
|
1525 |
+
"print('---------------------')\n",
|
1526 |
+
"print('What is the outlier removal threshold?', outlier_var)\n",
|
1527 |
+
"print('How many outliers have been removed?', len(X_train2) - len(X_train_dropped_outliers))\n",
|
1528 |
+
"print('---------------------')\n",
|
1529 |
+
"print('What is the scaling method?', scale_model_var)\n",
|
1530 |
+
"print('---------------------')\n",
|
1531 |
+
"print('What is the imputation method?', imputation_var)\n",
|
1532 |
+
"print('---------------------')\n",
|
1533 |
+
"print('What is the feature selection method?', feature_selection_var)\n",
|
1534 |
+
"print('What is the number of features selected?', len(selected_features))\n",
|
1535 |
+
"print('---------------------')\n",
|
1536 |
+
"print('What is the imbalance treatment method?', imbalance_var)\n",
|
1537 |
+
"print('---------------------')\n",
|
1538 |
+
"print('What is the model?', input_model)"
|
1539 |
]
|
1540 |
}
|
1541 |
],
|