etechoptimist
commited on
Commit
·
3714867
1
Parent(s):
c10f136
distilbert/distilbert-base-uncased-finetuned-sst-2-english
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
|
|
2 |
from transformers import pipeline
|
3 |
import re
|
4 |
|
5 |
-
def anomalies_detector(logs: str) -> list[
|
6 |
"""
|
7 |
Detect anomalies in software logs using a Hugging Face transformer model.
|
8 |
This function uses a specialized model trained to identify unusual patterns
|
@@ -19,12 +19,10 @@ def anomalies_detector(logs: str) -> list[tuple[int, str]]:
|
|
19 |
Returns:
|
20 |
list[tuple[int, str]]: List of tuples containing (line_number, anomalous_text)
|
21 |
"""
|
22 |
-
# Initialize the text classification pipeline with a
|
23 |
-
classifier = pipeline(
|
24 |
-
|
25 |
-
|
26 |
-
top_k=2 # Get both normal and anomalous probabilities
|
27 |
-
)
|
28 |
|
29 |
# Split logs into lines
|
30 |
log_lines = logs.split('\n')
|
@@ -38,13 +36,9 @@ def anomalies_detector(logs: str) -> list[tuple[int, str]]:
|
|
38 |
# Get classification result
|
39 |
results = classifier(line)
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
if result['label'] == 'LABEL_1' and result['score'] > 0.7: # LABEL_1 indicates potential anomaly
|
45 |
-
anomalies.append((line_num, line))
|
46 |
-
break
|
47 |
-
|
48 |
return anomalies
|
49 |
|
50 |
# Create a standard Gradio interface
|
|
|
2 |
from transformers import pipeline
|
3 |
import re
|
4 |
|
5 |
+
def anomalies_detector(logs: str) -> list[str]:
|
6 |
"""
|
7 |
Detect anomalies in software logs using a Hugging Face transformer model.
|
8 |
This function uses a specialized model trained to identify unusual patterns
|
|
|
19 |
Returns:
|
20 |
list[tuple[int, str]]: List of tuples containing (line_number, anomalous_text)
|
21 |
"""
|
22 |
+
# Initialize the text classification pipeline with a proper classification model
|
23 |
+
classifier = pipeline("text-classification",
|
24 |
+
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
|
25 |
+
|
|
|
|
|
26 |
|
27 |
# Split logs into lines
|
28 |
log_lines = logs.split('\n')
|
|
|
36 |
# Get classification result
|
37 |
results = classifier(line)
|
38 |
|
39 |
+
|
40 |
+
for log, res in zip(logs, results):
|
41 |
+
anomalies.append(f"{log} => {res}")
|
|
|
|
|
|
|
|
|
42 |
return anomalies
|
43 |
|
44 |
# Create a standard Gradio interface
|